AY
Anastasia Yendiki
Author with expertise in Diffusion Magnetic Resonance Imaging
Harvard University, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging
+ 8 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
19
h-index:
37
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Post mortem mapping of connectional anatomy for the validation of diffusion MRI

Anastasia Yendiki et al.Oct 24, 2023
+3
M
M
A
Abstract Despite the impressive advances in diffusion MRI (dMRI) acquisition and analysis that have taken place during the Human Connectome era, dMRI tractography is still an imperfect source of information on the circuitry of the brain. In this review, we discuss methods for post mortem validation of dMRI tractography, fiber orientations, and other microstructural properties of axon bundles that are typically extracted from dMRI data. These methods include anatomic tracer studies, Klingler’s dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
1
Citation9
0
Save
62

Using diffusion MRI data acquired with ultra-high gradients to improve tractography in routine-quality data

Chiara Maffei et al.Oct 24, 2023
+15
M
C
C
Abstract The development of scanners with ultra-high gradients, spearheaded by the Human Connectome Project, has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo diffusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings because of the constraints imposed by hardware and scanning time. In this study, we first update the classical protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much greater volume and variability of the streamlines that can be produced from today’s state-of-the-art diffusion MRI data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated version of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to benefit studies that use more modest acquisition protocols.
62
Citation5
0
Save
87

Insights from the IronTract challenge: optimal methods for mapping brain pathways from multi-shell diffusion MRI

Chiara Maffei et al.Oct 24, 2023
+48
K
G
C
Abstract Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing ( e . g ., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.
87
Citation2
0
Save
0

Translation of monosynaptic circuits underlying amygdala fMRI neurofeedback training

Lucas Trambaiolli et al.Sep 12, 2024
+4
E
C
L
fMRI neurofeedback using autobiographical memory recall to upregulate the amygdala is associated with resting-state functional connectivity (rsFC) changes between the amygdala and the salience and default mode networks (SN and DMN, respectively). We hypothesize the existence of anatomical circuits underlying these rsFC changes. Using a cross-species brain parcellation, we identified in non-human primates locations homologous to the regions of interest (ROIs) from studies showing pre-to-post-neurofeedback changes in rsFC with the left amygdala. We injected bidirectional tracers in the basolateral, lateral, and central amygdala nuclei of adult macaques and used bright- and dark-field microscopy to identify cells and axon terminals in each ROI (SN: anterior cingulate, ventrolateral, and insular cortices; DMN: temporal pole, middle frontal gyrus, angular gyrus, precuneus, posterior cingulate cortex, parahippocampal gyrus, hippocampus, and thalamus). We also performed additional injections in specific ROIs to validate the results following amygdala injections and delineate potential disynaptic pathways. Finally, we used high-resolution diffusion MRI data from four post-mortem macaque brains and one in vivo human brain to translate our findings to the neuroimaging domain. Different amygdala nuclei had significant monosynaptic connections with all the SN and DMN ipsilateral ROIs. Amygdala connections with the DMN contralateral ROIs are disynaptic through the hippocampus and parahippocampal gyrus. Diffusion MRI in both species benefitted from using the ground-truth tracer data to validate its findings, as we identified false-negative ipsilateral and false-positive contralateral connectivity results. This study provides the foundation for future causal investigations of amygdala neurofeedback modulation of the SN and DMN through these anatomic connections.
0
Citation1
0
Save
57

The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD

Suzanne Haber et al.Oct 24, 2023
A
C
J
S
Abstract Background The zona incerta (ZI) is involved in mediating survival behaviors and is connected to a wide range of cortical and subcortical structures, including key basal ganglia nuclei. Based on these connections and their links to behavioral modulation, we propose the ZI is a connectional hub for in mediating between top-down and bottom-up control and a possible target for deep brain stimulation for obsessive compulsive disorder. Methods We analyzed the trajectory of cortical fibers to the ZI in nonhuman and human primates, based on tracer injections in monkeys and high-resolution diffusion MRI in humans. The organization of cortical and subcortical connections with the ZI were identified in the nonhuman primate studies. Results Monkey anatomic data and human dMRI data showed a similar trajectory of fibers/streamlines to the ZI. PFC/ACC terminals all converge within the rostral ZI (ZIr), with dorsal and lateral areas most prominent. Motor areas terminate caudally. Dense subcortical reciprocal connections included the thalamus, medial hypothalamus, substantia nigra/ventral tegmental area, reticular formation, and pedunculopontine nucleus and a dense nonreciprocal projection to the lateral habenula (LHb). Additional connections included amygdala, dorsal raphe nucleus, and periaqueductal grey. Conclusions Dense connections with dorsal and lateral PFC/ACC cognitive control areas and LHb and SN/VTA coupled with inputs from the amygdala, hypothalamus, and brainstem, suggests that the ZIr is a subcortical hub positioned to modulate between top-down and bottom-up control. A DBS electrode placed in the ZIr would involve both connections common to other DBS sites, but also would capture several critically distinctive connections.
57
Citation1
0
Save
7

High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation

Robert Jones et al.Oct 24, 2023
+4
J
C
R
Abstract While many useful microstructural indices, as well as orientation distribution functions, can be obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of microstructural features that can be extracted from the full ensemble average propagator (EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the EAP from significantly undersampled q-space data. We present a post mortem validation study where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution DSI at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter provides direct measurements of axonal orientations at microscopic resolutions, allowing us to evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2-regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve both low angular error and low number of spurious peaks. With a scan length similar to that of high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable for orientation reconstruction and microstructural modeling techniques that require either grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS acceleration factor increases beyond R=3, the accuracy of these reconstruction methods degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our results provide useful benchmarks for the future development of even more efficient q-space acceleration techniques.
0

Quantification of Structural Brain Connectivity via a Conductance Model

Aina Frau‐Pascual et al.May 7, 2020
+2
B
M
A
Connectomics has proved promising in quantifying and understanding the effects of development, aging and an array of diseases on the brain. In this work, we propose a new structural connectivity measure from diffusion MRI that allows us to incorporate direct brain connections as well as indirect ones that would not be otherwise accounted for by standard techniques and that may be key for the better understanding of function from structure. From our experiments on the Human Connectome Project dataset, we find that our measure of structural connectivity better correlates with functional connectivity than streamline tractography does, meaning that it provides new structural information related to function. Through additional experiments on the ADNI-2 dataset, we demonstrate the ability of this new measure to better discriminate different stages of Alzheimer's disease. Our findings suggest that this measure is useful in the study of the normal brain structure, and for quantifying the effects of disease on the brain structure.
10

Eddy current-induced artifacts correction in high gradient strength diffusion MRI with dynamic field monitoring: demonstration in ex vivo human brain imaging

Gabriel Ramos‐Llordén et al.Oct 24, 2023
+10
J
D
G
To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI).A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model.Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging.Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy.
10
0
Save
17

Refractive-index matching enhanced polarization sensitive optical coherence tomography quantification in human brain tissue

Chao Liu et al.Oct 24, 2023
+9
R
W
C
Abstract The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2’-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in ex vivo human brain tissue. We obtain the cortical fiber orientation maps in the gray matter, which reveals the radial fibers in the gyrus, the U-fibers along the sulcus, as well as distinct layers of fiber axes exhibiting laminar organization. Further analysis shows that index matching reduces the noise in axis orientation measurements by 56% and 39%, in white and gray matter, respectively. Index matching also enables precise measurements of apparent birefringence, which was underestimated in the white matter by 82% but overestimated in the gray matter by 16% prior to TDE immersion. Mathematical simulations show that the improvements are primarily attributed to the reduction in the tissue scattering coefficient, leading to an enhanced signal-to-noise ratio in deeper tissue regions, which could not be achieved by conventional noise reduction methods.
9

Targeting default mode network connectivity with mindfulness-based fMRI neurofeedback: A pilot study among adolescents with affective disorder history

Jiahe Zhang et al.Oct 24, 2023
+6
F
J
J
ABSTRACT Adolescents experience alarmingly high rates of major depressive disorder (MDD), however, gold-standard treatments are only effective for ~50% of youth. Accordingly, there is a critical need to develop novel interventions, particularly ones that target neural mechanisms believed to potentiate depressive symptoms. Directly addressing this gap, we developed a mindfulness-based fMRI neurofeedback (mbNF) for adolescents that targets default mode network (DMN) hyperconnectivity, which has been implicated in the onset and maintenance of MDD. In this proof-of-concept study, adolescents ( n = 9) with a lifetime history of depression and/or anxiety were administered clinical interviews and self-report questionnaires, and then, each participant’s DMN and central executive network (CEN) were personalized using a resting state fMRI localizer. After the localizer scan, adolescents completed a brief mindfulness training followed by a mbNF session in the scanner wherein they were instructed to volitionally reduce DMN relative to CEN activation by practicing mindfulness meditation. Several promising findings emerged. First, mbNF successfully engaged the target brain state during neurofeedback; participants spent more time in the target state with DMN activation lower than CEN activation. Second, in each of the nine adolescents, mbNF led to significantly reduced within-DMN connectivity, which correlated with post-mbNF increases in state mindfulness. Last, a reduction of within-DMN connectivity mediated the association between better mbNF performance and increased state mindfulness. These findings demonstrate that personalized mbNF can effectively and non-invasively modulate the intrinsic networks known to be associated with the emergence and persistence of depressive symptoms during adolescence.
Load More