WL
Weiqiang Liu
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
0
h-index:
20
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Evolution of Natural Lifespan Variation and Molecular Strategies of Extended Lifespan

Alaattin Kaya et al.Nov 10, 2020
ABSTRACT The question of why and how some species or individuals within a population live longer than others is among the most important questions in the biology of aging. A particularly useful model to understand the genetic basis and selective forces acting on the plasticity of lifespan are closely related species or ecologically diverse individuals of the same species widely different in lifespan. Here, we analyzed 76 diverse wild isolates of two closely related budding yeast species Saccharomyces cerevisiae and Saccharomyces paradoxus and discovered a diversity of natural intra-species lifespan variation. We sequenced the genomes of these organisms and analyzed how their replicative lifespan is shaped by nutrients and transcriptional and metabolite patterns. We identified sets of genes and metabolites to regulate aging pathways, many of which have not been previously associated with lifespan regulation. We also identified and characterized long-lived strains with elevated intermediary metabolites and differentially regulated genes for NAD metabolism and the control of epigenetic landscape through chromatin silencing. Our data further offer insights into the evolution and mechanisms by which caloric restriction regulates lifespan by modulating the availability of nutrients without decreasing fitness. Overall, our study shows how the environment and natural selection interact to shape diversity of lifespan.
0

Orthogonal genome-wide screenings in bat cells identify MTHFD1 as a target of broad antiviral therapy

Danielle Anderson et al.Mar 30, 2020
Bats are responsible for the zoonotic transmission of several major viral diseases including the 2003 SARS outbreak and the ongoing COVID-19 pandemic. While bat genomic sequencing studies have revealed characteristic adaptations of the innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the tolerance of viral infections in bats. Here we report the establishment and screening of genome-wide RNAi library and CRISPR library for the model megabat, Pteropus Alecto. We used the complementary RNAi and CRISPR libraries to interrogate Pteropus Alecto cells for infection with two different viruses, mumps virus and Influenza A virus, respectively. Screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C-1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells as well as in human cells. MTHFD1 inhibitor carolacton potently blocked replication of several RNA viruses including SARS-CoV-2. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad spectrum antiviral therapy.
0

Comparative genomics provides insights into adaptive evolution and demographics of bats

Gaoming Liu et al.Nov 12, 2024
Abstract Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and two of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found two distinct patterns of ancient population dynamics in bats and population changes since the last-glacial maximum do not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.