EI
Eri Itai
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
3
h-index:
4
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

A Large-Scale ENIGMA Multisite Replication Study of Brain Age in Depression

Laura Han et al.Aug 29, 2022
+34
M
L
L
ABSTRACT Background Several studies have evaluated whether depressed persons have older appearing brains than their nondepressed peers. However, the estimated neuroimaging-derived “brain age gap” has varied from study to study, likely driven by differences in training and testing sample (size), age range, and used modality/features. To validate our previously developed ENIGMA brain age model and the identified brain age gap, we aim to replicate the presence and effect size estimate previously found in the largest study in depression to date (N=2,126 controls & N=2,675 cases; +1.08 years [SE 0.22], Cohen’s d=0.14, 95% CI: 0.08-0.20), in independent cohorts that were not part of the original study. Methods A previously trained brain age model ( www.photon-ai.com/enigma_brainage ) based on 77 FreeSurfer brain regions of interest was used to obtain unbiased brain age predictions in 751 controls and 766 persons with depression (18-75 years) from 13 new cohorts collected from 20 different scanners. Results Our ENIGMA MDD brain age model generalized reasonably well to controls from the new cohorts (predicted age vs. age: r = 0.73, R 2 =0.47, MAE=7.50 years), although the performance varied from cohort to cohort. In these new cohorts, on average, depressed persons showed a significantly higher brain age gap of +1 year (SE 0.35) (Cohen’s d□=□□.15, 95% CI: 0.05–0.25) compared with controls, highly similar to our previous finding. Conclusions This study further validates our previously developed ENIGMA brain age algorithm. Importantly, we replicated the brain age gap in depression with a comparable effect size. Thus, two large-scale independent mega-analyses across in total 32 cohorts and >3,400 patients and >2,800 controls worldwide show reliable but subtle effects of brain aging in adult depression.
0

Comprehensive evaluation of pipelines for diagnostic biomarkers of major depressive disorder using multi-site resting-state fMRI datasets

Yuji Takahara et al.Mar 19, 2024
+33
H
K
Y
Abstract The objective diagnostic and stratification biomarkers developed with resting-state functional magnetic resonance imaging (rs-fMRI) data are expected to contribute to more effective treatment for mental disorders. Unfortunately, there are currently no widely accepted biomarkers, partially due to the large variety of analysis pipelines for developing them. In this study we comprehensively evaluated analysis pipelines using a large-scale, multi-site fMRI dataset for major depressive disorder (MDD) (1162 participants from eight imaging sites). We explored the combinations of options in four subprocesses of analysis pipelines: six types of brain parcellation, four types of estimations of functional connectivity (FC), three types of site difference harmonization, and five types of machine learning methods. 360 different MDD diagnostic biomarkers were constructed using the SRPBS dataset acquired with unified protocols (713 participants from four imaging sites) as a discovery dataset and evaluated with datasets from other projects acquired with heterogeneous protocols (449 participants from four imaging sites) for independent validation. To identify the optimal options regardless of the discovery dataset, we repeated the same procedure after swapping the roles of the two datasets. We found pipelines that included Glasser’s parcellation, tangent-covariance, no harmonization, and non-sparse machine learning methods tended to result in high classification performance. The diagnosis results of the top 10 biomarkers showed high similarity, and weight similarity was also observed between eight of the biomarkers, except two that used both data-driven parcellation and FC computation. We applied the top 10 pipelines to the datasets of other mental disorders (autism spectral disorder: ASD and schizophrenia: SCZ) and eight of the ten biomarkers showed sufficient classification performances for both disorders, except two pipelines that included Pearson correlation, ComBat harmonization and random forest classifier combination. Highlights We evaluated the analysis pipelines of rsFC biomarker development. Four subprocesses in them were investigated with two multi-site datasets. Glasser’s parcellation, tangent covariance, and non-sparse methods were preferred. The weight patterns of eight of the top 10 biomarkers showed high commonality. Eight of the top 10 pipelines were successful for developing SCZ/ASD biomarkers.