BP
Benjamin Porebski
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
313
h-index:
19
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Macromolecular condensation buffers intracellular water potential

J. Watson et al.Oct 18, 2023
Abstract Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions 1 . Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reducing the available ‘free’ bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales 2,3 ; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.
0

Reactive Centre Loop Dynamics and Serpin Specificity

Emilia Marijanovic et al.Aug 14, 2018
Serine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α1-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition. Previous studies have attempted to alter the specificity by mutating the RCL to that of a target serpin, but the rules governing specificity are not understood well enough yet to enable specificity to be engineered at will. In this paper, we use conserpin, a synthetic, thermostable serpin, as a model protein with which to investigate the determinants of serpin specificity by engineering its RCL. Replacing the RCL sequence with that from α1-antitrypsin fails to restore specificity against trypsin or human neutrophil elastase. Structural determination of the RCL-engineered conserpin and molecular dynamics simulations indicate that, although the RCL sequence may partially dictate specificity, local electrostatics and RCL dynamics may dictate the rate of insertion during protease inhibition, and thus whether it behaves as an inhibitor or a substrate. Engineering serpin specificity is therefore substantially more complex than solely manipulating the RCL sequence, and will require a more thorough understanding of how conformational dynamics achieves the delicate balance between stability, folding and function required by the exquisite serpin mechanism of action.
0

Structure and dynamics of the autoantigen GAD65 in complex with the human autoimmune polyendocrine syndrome type 2-associated autoantibody b96.11

Susanne Stander et al.Mar 19, 2024
The enzyme glutamate decarboxylase (GAD) produces the neurotransmitter GABA, using pyridoxal-5'-phosphate. GAD exists as two isoforms, GAD65 and GAD67. Only GAD65 acts as a major autoantigen, with its autoantibodies frequently found in type 1 diabetes and other autoimmune diseases. Here we characterize the structure and dynamics of GAD65 and its interaction with the autoimmune polyendocrine syndrome type 2-associated autoantibody b96.11. Combining hydrogen-deuterium exchange mass spectrometry (HDX), X-ray crystallography, cryo-electron microscopy and computational approaches, we dissect the conformational dynamics of the inactive apo- and the active holo-forms of GAD65, as well as the structure of the GAD65-autoantibody complex. HDX reveals the time-resolved, local dynamics that accompany autoinactivation, with the catalytic loop playing a key role in promoting collective dynamics at the interface between CTD and PLP domains. In the GAD65-b96.11 complex, heavy chain CDRs dominate the interaction, with the relatively long CDRH3 at the interface centre and uniquely bridging the GAD65 dimer via extensive electrostatic interactions with the 260 PEVKEK 265 motif. The autoantibody bridges structural elements on GAD65 that contribute to conformational change in GAD65, thus connecting the unique and intrinsic conformational flexibility that governs the autoinactivation mechanism of the enzyme to its autoantigenicity. The intrinsic dynamics, rather than sequence differences within epitopes, appear to be responsible for the contrasting autoantigenicities of GAD65 and GAD67. Our data thus reveal insights into the structural and dynamic differences between GAD65 and GAD67 that dictate their contrasting autoantibody reactivities, provide a new structural rationalisation for the nature of the autoimmune response to GAD65, and may have broader implications for antigenicity in general.
2

Mutational and biophysical robustness in a pre-stabilized monobody

Peter Chandler et al.Dec 14, 2020
Abstract The fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyper-stable monobody derivative with diagnostic and therapeutic potential. Pre-stabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain towards biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerisation. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the pre-stabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a pre-stabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics, and is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.
0

Structural Capacitance in Protein Evolution and Human Diseases

Chen Li et al.Feb 22, 2018
Canonical mechanisms of protein evolution include the duplication and diversification of pre-existing folds through genetic alterations that include point mutations, insertions, deletions, and copy number amplifications, as well as post-translational modifications that modify processes such as folding efficiency and cellular localization. Following a survey of the human mutation database, we have identified an additional mechanism, that we term 'structural capacitance', which results in the de novo generation of microstructure in previously disordered regions. We suggest that the potential for structural capacitance confers select proteins with the capacity to evolve over rapid timescales, facilitating saltatory evolution as opoposed to exclusively canonical Darwinian mechanisms. Our results implicate the elements of protein microstructure generated by this distinct mechanism in the pathogenesis of a wide variety of human diseases. The benefits of rapidly furnishing the potential for evolutionary change conferred by structural capacitance are consequently counterbalanced by this accompanying risk, with the extent of this determined by the host immune system. The phenomenon of structural capacitance has implications ranging from the ancestral diversification of protein folds to the engineering of synthetic proteins with enhanced evolvability.