FR
Félix Rico
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
799
h-index:
29
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro

Kévin Alessandri et al.Aug 26, 2013
+15
V
B
K
Significance Tumor growth intrinsically generates pressure onto the surrounding tissues, which conversely compress the tumor. These mechanical forces have been suggested to contribute to tumor growth regulation. We developed a microfluidic technique to produce 3D cell-based assays and to interrogate the interplay between tumor growth and mechanics in vitro. Multicellular spheroids are grown in permeable elastic capsules. Capsule deformation provides a direct measure of the exerted pressure. By simultaneously imaging the spheroid by confocal microscopy, we show that confinement induces a drastic cellular reorganization, including increased motility of peripheral cells. We propose that compressive stress has a beneficial impact on slowing down tumor evolution but may have a detrimental effect by triggering cell invasion and metastasis.
0

Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips

Félix Rico et al.Aug 29, 2005
+3
N
P
F
Atomic force microscopy (AFM) allows the acquisition of high-resolution images and the measurement of mechanical properties of living cells under physiological conditions. AFM cantilevers with blunted pyramidal tips are commonly used to obtain images of living cells. Measurement of mechanical properties with these tips requires a contact model that takes into account their blunted geometry. The aim of this work was to develop a contact model of a blunted pyramidal tip and to assess the suitability of pyramidal tips for probing mechanical properties of soft gels and living cells. We developed a contact model of a blunted pyramidal tip indenting an elastic half-space. We measured Young's modulus (E) and the complex shear modulus (G*= G' +i G" ) of agarose gels and A549 alveolar epithelial cells with pyramidal tips and compared them with those obtained with spherical tips. The gels exhibited an elastic behavior with almost coincident loading and unloading force curves and negligible values of G". E fell sharply with indentation up to approximately 300 nm , showing a linear regime for deeper indentations. A similar indentation dependence of E with twofold lower values at the linear regime was obtained with the spherical tip fitted with Hertz's model. The dependence of E on indentation in cells paralleled that found in gels. Cells exhibited viscoelastic behavior with G"/G' approximately 1/4 . Pyramidal tips commonly used for AFM imaging are suitable for probing mechanical properties of soft gels and living cells.
1

Human septins in cells organize as octamer-based filaments mediating actin-membrane anchoring

Carla Martins et al.Feb 24, 2022
+23
S
N
C
Abstract Septins are cytoskeletal proteins conserved from algae and protists to mammals. Septin knock-out animals have established that septins are essential for animal physiology, but their molecular function remains elusive. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether actin-decorating septins organize as filaments and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay for probing the presence and composition of septin filaments in situ in cells, we show that all septins decorating actin stress fibers are present as filaments whose integrity depends on octameric septin protomers. Atomic force microscopy nanoindentation measurements on cells confirmed that cell stiffness depends on the presence of octamer-containing septin filaments. Super-resolution structured illumination microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that actin-associated septin filaments are membrane-bound and largely immobilized. Finally, reconstitution assays on supported lipid bilayers showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin fibers at the plasma membrane.
1
Citation4
0
Save
0

PyFMLab: Open-source software for atomic force microscopy microrheology data analysis

Javier López-Alonso et al.Jul 24, 2024
+5
S
M
J
Background Atomic force microscopy (AFM) is one of the main techniques used to characterize the mechanical properties of soft biological samples and biomaterials at the nanoscale. Despite efforts made by the AFM community to promote open-source data analysis tools, standardization continues to be a significant concern in a field that requires common analysis procedures. AFM-based mechanical measurements involve applying a controlled force to the sample and measure the resulting deformation in the so-called force-distance curves. These may include simple approach and retract or oscillatory cycles at various frequencies (microrheology). To extract quantitative parameters, such as the elastic modulus, from these measurements, AFM measurements are processed using data analysis software. Although open tools exist and allow obtaining the mechanical properties of the sample, most of them only include standard elastic models and do not allow the processing of microrheology data. In this work, we have developed an open-source software package (called PyFMLab, as of python force microscopy laboratory) capable of determining the viscoelastic properties of samples from both conventional force-distance curves and microrheology measurements. Methods PyFMLab has been written in Python, which provides an accessible syntax and sufficient computational efficiency. The software features were divided into separate, self-contained libraries to enhance code organization and modularity and to improve readability, maintainability, testability, and reusability. To validate PyFMLab, two AFM datasets, one composed of simple force curves and another including oscillatory measurements, were collected on HeLa cells. Results The viscoelastic parameters obtained on the two datasets analysed using PyFMLab were validated against data processing proprietary software and against validated MATLAB routines developed before obtaining equivalent results. Conclusions Its open-source nature and versatility makes PyFMLab an open-source solution that paves the way for standardized viscoelastic characterization of biological samples from both force-distance curves and microrheology measurements.
0
Citation2
0
Save
7

Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds

Yong Wang et al.Aug 15, 2022
+8
A
C
Y
Abstract Single-molecule data are of great significance in biology, chemistry, and medicine. However, experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are needed. Acoustic force spectroscopy (AFS) is an emerging manipulation technique which generates acoustic waves to apply force in parallel on a large population of microbeads tethered to a surface. We have exploited this configuration on a recently developed modular Junctured-DNA (J-DNA) scaffold designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measured its unbinding kinetics under force at the single-bond level. Special effort was made in analyzing the data in order to identify potential pitfalls. We established a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy for measuring the force dependent rupture of a single domain antibody with its antigen. We get a good agreement with standard measurement at zero force. Our technique offers single molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
7
Citation2
0
Save
1

BIN1 regulates actin-membrane interactions during IRSp53-dependent filopodia formation

Laura Picas et al.Mar 21, 2022
+12
C
F
L
Abstract Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.
1
Citation1
0
Save
3

Reliable, standardized measurements for cell mechanical properties

Sandra Pérez‐Domínguez et al.Jun 14, 2023
+23
J
S
S
Abstract Atomic force microscopy (AFM) has become indispensable for studying biological and medical samples. More than two decades of experiments have revealed that cancer cells are softer than healthy cells (for measured cells cultured on stiff substrates). The softness or, more precisely, the larger deformability of cancer cells, primarily independent of cancer types, could be used as a sensitive marker of pathological changes. The wide application of biomechanics in clinics would require designing instruments with specific calibration, data collection, and analysis procedures. For these reasons, such development is, at present, still very limited, hampering the clinical exploitation of mechanical measurements. Here, we propose a standardized operational protocol (SOP), developed within the EU ITN network Phys2BioMed, which allows the detection of the biomechanical properties of living cancer cells regardless of the nanoindentation instruments used (AFMs and other indenters) and the laboratory involved in the research. We standardized the cell cultures, AFM calibration, measurements, and data analysis. This effort resulted in a step-by-step SOP for cell cultures, instrument calibration, measurements, and data analysis, leading to the concordance of the results (Young’s modulus) measured among the six EU laboratories involved. Our results highlight the importance of the SOP in obtaining a reproducible mechanical characterization of cancer cells and paving the way toward exploiting biomechanics for diagnostic purposes in clinics.
0

MechanoProDB: a web-based database for exploring the mechanical properties of proteins

Ismahene Mesbah et al.Jan 1, 2024
F
B
I
Abstract The mechanical stability of proteins is crucial for biological processes. To understand the mechanical functions of proteins, it is important to know the protein structure and mechanical properties. Protein mechanics is usually investigated through force spectroscopy experiments and simulations that probe the forces required to unfold the protein of interest. While there is a wealth of data in the literature on force spectroscopy experiments and steered molecular dynamics simulations of forced protein unfolding, this information is spread and difficult to access by non-experts. Here, we introduce MechanoProDB, a novel web-based database resource for collecting and mining data obtained from experimental and computational works. MechanoProDB provides a curated repository for a wide range of proteins, including muscle proteins, adhesion molecules and membrane proteins. The database incorporates relevant parameters that provide insights into the mechanical stability of proteins and their conformational stability such as the unfolding forces, energy landscape parameters and contour lengths of unfolding steps. Additionally, it provides intuitive annotations of the unfolding pathways of each protein, allowing users to explore the individual steps during mechanical unfolding. The user-friendly interface of MechanoProDB allows researchers to efficiently navigate, search and download data pertaining to specific protein folds or experimental conditions. Users can visualize protein structures using interactive tools integrated within the database, such as Mol*, and plot available data through integrated plotting tools. To ensure data quality and reliability, we have carefully manually verified and curated the data currently available on MechanoProDB. Furthermore, the database also features an interface that enables users to contribute new data and annotations, promoting community-driven comprehensiveness. The freely available MechanoProDB aims to streamline and accelerate research in the field of mechanobiology and biophysics by offering a unique platform for data sharing and analysis. MechanoProDB is freely available at https://mechanoprodb.ibdm.univ-amu.fr.
0
Citation1
0
Save
0

Synthesis of biocompatible hydrogel of alginate-chitosan enriched with iron sulfide nanocrystals

Aish Escamilla et al.Jun 20, 2024
+6
M
R
A
This work aimed to synthesize and characterize a biocompatible hydrogel of alginate and chitosan enriched with iron sulfide nanocrystals. Three concentrations of iron sulfide nanocrystals (FeS
0

MechanoProDB: A Web Based Database for Exploring the Mechanical Properties of Proteins

Ismahene Mesbah et al.Jan 1, 2023
F
B
I
The mechanical stability of proteins is crucial for biological processes. To understand the mechanical functions of proteins, it is important to know the protein structure and mechanical properties. Protein mechanics is usually investigated through force spectroscopy experiments and simulations that probe the forces required to unfold the protein of interest. While there is a wealth of data in the literature on force spectroscopy experiments and steered molecular dynamics simulations of forced protein unfolding, this information is spread and difficult to access by non-experts. Here we introduce MechanoProDB, a novel web-based database resource for collecting and mining data obtained from experimental and computational works. MechanoProDB provides a curated repository for a wide range of proteins, including muscle proteins, adhesion molecules and membrane proteins. The database incorporates relevant parameters that provide insights into the mechanical stability of proteins and their conformational stability such as the unfolding forces, energy landscape parameters and contour lengths of unfolding steps. Additionally, it provides intuitive annotations of the unfolding pathways of each protein, allowing users to explore the individual steps during mechanical unfolding. The user-friendly interface of MechanoProBD allows researchers to efficiently navigate, search and download data pertaining to specific protein folds or experimental conditions. Users can visualize protein structures using interactive tools integrated within the database, such as Mol*, and plot available data through integrated plotting tools. To ensure data quality and reliability, we have carefully manually verified and curated the data currently available on MechanoProDB. Furthermore, the database also features an interface that enables users to contribute new data and annotations, promoting community-driven comprehensiveness. The freely available MechanoProDB aims to streamline and accelerate research in the field of mechanobiology and biophysics by offering a unique platform for data sharing and analysis. MechanoProDB is freely available at https://mechanoprodb.ibdm.univ-amu.fr.
Load More