Abstract Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable ‘sterilizing immunity’ at the mucosal level. Our study uncovers, strong neutralizing mucosal component (NT50 ≤ 50pM), emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the Receptor-Binding-Domain (RBD) of SARS-CoV-2 spike protein and demonstrate that these IgAs are key mediators of potent neutralization. RBD-targeting IgAs were found to associate with the Secretory Component, indicating their bona-fide transcytotic origin and their dimeric tetravalent nature. The mechanistic understanding of the exceptionally high neutralizing activity provided by mucosal IgA, acting at the first line of defence, will advance vaccination design and surveillance principles, pointing to novel treatment approaches, and to new routes of vaccine administration and boosting. Significance statement We unveiled powerful mucosal neutralization upon BNT162b2 vaccination, mediated by temporary polymeric IgA and explored its longitudinal properties. We present a model, whereby the molecular architecture of polymeric mucosal IgA and its spatial properties are responsible for the outstanding SARS-CoV-2 neutralization potential. We established a methodology for quantitative comparison of immunoreactivity and neutralization for IgG and IgAs in serum and saliva in molar equivalents for standardization in diagnostics, surveillance of protection and for vaccine evaluations.