VJ
Victor Jin
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
538
h-index:
47
/
i10-index:
98
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Suz12 binds to silenced regions of the genome in a cell-type-specific manner

Sharon Squazzo et al.Jun 2, 2006
Suz12 is a component of the Polycomb group complexes 2, 3, and 4 (PRC 2/3/4). These complexes are critical for proper embryonic development, but very few target genes have been identified in either mouse or human cells. Using a variety of ChIP-chip approaches, we have identified a large set of Suz12 target genes in five different human and mouse cell lines. Interestingly, we found that Suz12 target promoters are cell type specific, with transcription factors and homeobox proteins predominating in embryonal cells and glycoproteins and immunoglobulin-related proteins predominating in adult tumors. We have also characterized the localization of other components of the PRC complex with Suz12 and investigated the overall relationship between Suz12 binding and markers of active versus inactive chromatin, using both promoter arrays and custom tiling arrays. Surprisingly, we find that the PRC complexes can be localized to discrete binding sites or spread through large regions of the mouse and human genomes. Finally, we have shown that some Suz12 target genes are bound by OCT4 in embryonal cells and suggest that OCT4 maintains stem cell self-renewal, in part, by recruiting PRC complexes to certain genes that promote differentiation.
0
Citation314
0
Save
0

Coordinate Enhancer Reprogramming by GATA3 and AP1 Promotes Phenotypic Plasticity to Achieve Breast Cancer Endocrine Resistance

Mingjun Bi et al.Sep 16, 2019
ABSTRACT Acquired therapy resistance is a major problem for anticancer treatment, yet the underlying molecular mechanisms remain unclear. Using an established breast cancer cellular model for endocrine resistance, we show that hormone resistance is associated with enhanced phenotypic plasticity, indicated by a general downregulation of luminal/epithelial differentiation markers and upregulation of basal/mesenchymal invasive markers. Our extensive omics studies, including GRO-seq on enhancer landscapes, demonstrate that the global enhancer gain/loss reprogramming driven by the differential interactions between ERα and other oncogenic transcription factors (TFs), predominantly GATA3 and AP1, profoundly alters breast cancer transcriptional programs. Our functional studies in multiple biological systems including culture and xenograft models of MCF7 and T47D lines support a coordinate role of GATA3 and AP1 in enhancer reprogramming that promotes phenotypic plasticity and endocrine resistance. Collectively, our study implicates that changes in TF-TF and TF-enhancer interactions can lead to genome-wide enhancer reprogramming, resulting in transcriptional dysregulations that promote plasticity and cancer therapy-resistance progression.
0
Citation3
0
Save
2

Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations

Yufan Zhou et al.Oct 2, 2023
Abstract An integration of 3D chromatin structure and gene expression at single-cell resolution has yet been demonstrated. Here, we develop a computational method, a multiomic data integration (MUDI) algorithm, which integrates scHi-C and scRNA-seq data to precisely define the 3D-regulated and biological-context dependent cell subpopulations or topologically integrated subpopulations (TISPs). We demonstrate its algorithmic utility on the publicly available and newly generated scHi-C and scRNA-seq data. We then test and apply MUDI in a breast cancer cell model system to demonstrate its biological-context dependent utility. We found the newly defined topologically conserved associating domain (CAD) is the characteristic single-cell 3D chromatin structure and better characterizes chromatin domains in single-cell resolution. We further identify 20 TISPs uniquely characterizing 3D-regulated breast cancer cellular states. We reveal two of TISPs are remarkably resemble to high cycling breast cancer persister cells and chromatin modifying enzymes might be functional regulators to drive the alteration of the 3D chromatin structures. Our comprehensive integration of scHi-C and scRNA-seq data in cancer cells at single-cell resolution provides mechanistic insights into 3D-regulated heterogeneity of developing drug-tolerant cancer cells.
4

HiCImpute: A Bayesian Hierarchical Model for Identifying Structural Zeros and Enhancing Single Cell Hi-C Data

Qing Xie et al.Sep 3, 2021
Abstract Single cell Hi-C techniques enable one to study cell to cell variability in chromatin interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that is, the existence of excess zeros due to insufficient sequencing depth. Complicate things further is the fact that not all zeros are created equal, as some are due to loci truly not interacting because of the underlying biological mechanism (structural zeros), whereas others are indeed due to insufficient sequencing depth (sampling zeros), especially for loci that interact infrequently. Differentiating between structural zeros and sampling zeros is important since correct inference would improve downstream analyses such as clustering and discovery of subtypes. Nevertheless, distinguishing between these two types of zeros has received little attention in the single cell Hi-C literature, where the issue of sparsity has been addressed mainly as a data quality improvement problem. To fill this gap, in this paper, we propose HiCImpute, a Bayesian hierarchy model that goes beyond data quality improvement by also identifying observed zeros that are in fact structural zeros. HiCImpute takes spatial dependencies of scHi-C 2D data structure into account while also borrowing information from similar single cells and bulk data, when such are available. Through an extensive set of analyses of synthetic and real data, we demonstrate the ability of HiCImpute for identifying structural zeros with high sensitivity, and for accurate imputation of dropout values in sampling zeros. Downstream analyses using data improved from HiCImpute yielded much more accurate clustering of cell types compared to using observed data or data improved by several comparison methods. Most significantly, HiCImpute-improved data has led to the identification of subtypes within each of the excitatory neuronal cells of L4 and L5 in the prefrontal cortex.
0

Reprogramming of 3D chromatin domains by antagonizing the β-catenin/CBP interaction attenuates insulin signaling in pancreatic cancer

Yufan Zhou et al.Nov 14, 2023
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of the functional crosstalk between antagonizing the β-catenin/CBP interaction effect changes in 3D chromatin architecture and thereby gene expression and downstream effects remains to be elucidated. Here we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after the treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1, a key insulin signaling gene, significantly impede pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
0

EHMT2 Inactivation in Pancreatic Epithelial Cells Shapes the Transcriptional Landscape and Inflammation Response of the Whole Pancreas

Gareth Pollin et al.Mar 16, 2024
ABSTRACT The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation. Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from EHMT2 conditional knockout animals ( EHMT2 fl/fl ) targeted to the exocrine pancreatic epithelial cells ( Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the EHMT2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. The EHMT2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional EHMT2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific EHMT2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the EHMT2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.
0

Hi-C profiling in tissues reveals 3D chromatin-regulated breast tumor heterogeneity and tumor-specific looping-mediated biological pathways

Lavanya Choppavarapu et al.Mar 13, 2024
SUMMARY Current knowledge in three-dimensional (3D) chromatin regulation in normal and disease states was mostly accumulated through Hi-C profiling in in vitro cell culture system. The limitations include failing to recapitulate disease-specific physiological properties and often lacking clinically relevant disease microenvironment. In this study, we conduct tissue-specific Hi-C profiling in a pilot cohort of 12 breast tissues comprising of two normal tissues (NTs) and ten ER+ breast tumor tissues (TTs) including five primary tumors (PTs), and five tamoxifen-treated recurrent tumors (RTs). We find largely preserved compartments, highly heterogeneous topological associated domains (TADs) and intensively variable chromatin loops among breast tumors, demonstrating 3D chromatin-regulated breast tumor heterogeneity. Further cross-examination identifies RT-specific looping-mediated biological pathways and suggests CA2, an enhancer-promoter looping (EPL)-mediated target gene within the bicarbonate transport metabolism pathway, might play a role in driving the tamoxifen resistance. Remarkably, the inhibition of CA2 not only impedes tumor growth both in vitro and in vivo , but also reverses chromatin looping. Our study thus yields significant mechanistic insights into the role and clinical relevance of 3D chromatin architecture in breast cancer endocrine resistance.