RR
Rebecca Rodell
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

YTHDC1 cooperates with the THO complex to prevent RNA damage-induced DNA breaks

Ning Tsao et al.Mar 14, 2024
Summary Certain environmental toxins are nucleic acid damaging agents, as are many chemotherapeutics used for cancer therapy. These agents induce various adducts in DNA as well as RNA. Indeed, most of the nucleic acid adducts (>90%) formed due to these chemicals, such as alkylating agents, occur in RNA 1 . However, compared to the well-studied mechanisms for DNA alkylation repair, the biological consequences of RNA damage are largely unexplored. Here, we demonstrate that RNA damage can directly result in loss of genome integrity. Specifically, we show that a human YTH domain-containing protein, YTHDC1, regulates alkylation damage responses in association with the THO complex (THOC) 2 . In addition to its established binding to N 6-methyladenosine (m6A)-containing RNAs, YTHDC1 binds to N 1-methyladenosine (m1A)-containing RNAs upon alkylation. In the absence of YTHDC1, alkylation damage results in increased alkylation damage sensitivity and DNA breaks. Such phenotypes are fully attributable to RNA damage, since an RNA-specific dealkylase can rescue these phenotypes. These R NA d amage-induced DNA b reaks (RDIBs) depend on R-loop formation, which in turn are processed by factors involved in transcription-coupled nucleotide excision repair. Strikingly, in the absence of YTHDC1 or THOC, an RNA m1A methyltransferase targeted to the nucleus is sufficient to induce DNA breaks. Our results uncover a unique role for YTHDC1-THOC in base damage responses by preventing RDIBs, providing definitive evidence for how damaged RNAs can impact genomic integrity.
2

The ASCC2 CUE domain contacts adjacent ubiquitins to recognize K63-linked polyubiquitin

Patrick Lombardi et al.Oct 17, 2021
Abstract Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the ALKBH3-ASCC repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains using its CUE domain, a type of ubiquitin-binding domain that typically binds monoubiquitin and does not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. Whereas the ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, the contacts with the proximal ubiquitin are unique to ASCC2. The N-terminal portion of the ASCC2 α1 helix, including residues E467 and S470, contributes to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response.