AF
André Fisahn
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,694
h-index:
31
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Molecular chaperone ability to inhibit amyloid-derived neurotoxicity, but not amorphous protein aggregation, depends on a conserved pH-sensitive Asp residue

Gefei Chen et al.Dec 2, 2021
Abstract Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but the respective mechanisms are not fully understood. The BRICHOS domain constitutes a disease-associated small heat shock protein-like chaperone family, with activities against both amyloid toxicity and amorphous protein aggregation. Here, we show that the activity of two BRICHOS domain families against Alzheimer’s disease associated amyloid-β neurotoxicity to mouse hippocampi in vitro depends on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The conserved Asp in its ionized state promotes structural flexibility of the BRICHOS domain and has a p K a value between pH 6.0–7.0, suggesting that chaperone effects against amyloid toxicity can be affected by physiological pH variations. Finally, the Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families and animal species, indicating independent evolution of molecular chaperone activities against amyloid fibril formation and non-fibrillar amorphous protein aggregation.
1
Citation2
0
Save
0

Association of microglia loss with hippocampal network impairments as a turning point in the amyloid pathology progression

Giusy Pizzirusso et al.Mar 14, 2024
Abstract Alzheimer’s disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer’s disease onset and progression. Characterizing the initial phase of Alzheimer’s disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the App NL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer’s disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis-and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network’s functionality. These results suggest that the early loss of microglia could be a pivotal event in the progression of Alzheimer’s disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.