AB
A. Bloom
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
29
h-index:
17
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Constitutively active SARM1 variants found in ALS patients induce neuropathy

A. Bloom et al.Apr 16, 2021
Abstract In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD + hydrolase SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively-active SARM1 enzymes that promote degeneration when expressed in cultured neurons. To investigate whether naturally-occurring human variants might similarly disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of 29 rare SARM1 alleles identified among 8,507 amyotrophic lateral sclerosis (ALS) patients. Ten missense variants or small in-frame deletions exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. Expression of these constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1 V184G , the constitutively active variant found most frequently in the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.
1
Citation8
0
Save
2

Disruption of lactate metabolism in the peripheral nervous system leads to motor-selective deficits

A. Bloom et al.Jun 30, 2022
Abstract Schwann cells (SCs) myelinate and provide trophic support to axons in the peripheral nervous system (PNS) and disruption of SC cellular metabolism leads to demyelination and axon degeneration, both symptoms of peripheral neuropathies. The lactate shuttle hypothesis proposes that glycolytic support cells supply lactate to adjacent axons to sustain their high metabolic demands, a process that requires the interconversion of lactate and pyruvate via lactate dehydrogenase (LDH) in both SCs and neurons. To test this hypothesis in the PNS, we selectively knocked out the genes for both LDH enzymes, LDHA and LDHB, in motor neurons (MNs), sensory neurons (SNs), or SCs. Interestingly, motor axons and their synapses progressively degenerate when LDH is deleted from either MNs or SCs; however, defects in sensory axons or their terminals were not observed when LDH was excised from either SNs or SCs. Deletion of LDH in SCs also leads to a decrease in total ATP levels in peripheral nerves despite a marked accumulation of pyruvate and glycolytic intermediates, consistent with the failure of pyruvate to lactate conversion in SCs leading to energetic deficits in axons. These results support a model in which motor axons are more dependent on SC-derived lactate than are sensory axons, a specific dependency that suggests LDH and lactate shuttling influence the course of motor-dominated neuropathies such as ALS.
2
Citation4
0
Save
0

Reduced STMN2 and pathogenic TDP-43, two hallmarks of ALS, synergize to accelerate motor decline in mice

Kelsey Krus et al.Mar 20, 2024
Abstract Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 ( Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer’s Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation. The interaction between STMN2 loss and TDP-43 dysfunction has not been studied in mice because TDP-43 regulates human but not murine Stmn2 splicing. Therefore, we generated trans-heterozygous mice that lack one functional copy of Stmn2 and express one mutant TDP-43 Q331K knock-in allele to investigate whether reduced STMN2 function exacerbates TDP-43-dependent pathology. Indeed, we observe synergy between these two alleles, resulting in an early onset, progressive motor deficit. Surprisingly, this behavioral defect is not accompanied by detectable neuropathology in the brain, spinal cord, peripheral nerves or at neuromuscular junctions (NMJs). However, the trans-heterozygous mice exhibit abnormal mitochondrial morphology in their distal axons and NMJs. As both STMN2 and TDP-43 affect mitochondrial dynamics, and neuronal mitochondrial dysfunction is a cardinal feature of many neurodegenerative diseases, this abnormality likely contributes to the observed motor deficit. These findings demonstrate that partial loss of STMN2 significantly exacerbates TDP-43-associated phenotypes, suggesting that STMN2 restoration could ameliorate TDP-43 related disease before the onset of degeneration.
0
Citation1
0
Save
10

SARM1 promotes axonal, synaptic, and mitochondrial pathologies in Charcot-Marie-Tooth disease type 2A

Yurie Yamada et al.May 20, 2022
Abstract Charcot-Marie-Tooth disease (CMT) type 2A is an axonal neuropathy caused by mutations in the mitofusin 2 ( MFN2 ) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying axonal pathology is unknown. SARM1, the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation ( Mfn2 H361Y ) that exhibits progressive dying-back axonal degeneration, NMJ abnormalities, muscle atrophy, and mitochondrial abnormalities, all hallmarks of the human disease. We generated Sarm1 knockout and Mfn2 H361Y , Sarm1 double mutant rats and find that deletion of SARM1 rescues axonal, synaptic, and muscle phenotypes, demonstrating that SARM1 induces much of the neuropathology in this model. Despite the presence of mutant Mfn2 protein in these double mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activate SARM1, and activated SARM1 feeds back on mitochondria to exacerbate mitochondrial pathology. As such, this work identifies SARM1 inhibition as an exciting therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.
10
Citation1
0
Save
0

Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves

Caitlin Dingwall et al.Jun 25, 2024
Programmed axon degeneration (AxD) is a key feature of many neurodegenerative diseases. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of AxD, preventing it from initiating the rapid local NAD+ depletion and metabolic catastrophe that precipitates axon destruction. Because these components of the AxD pathway act within neurons, it was also assumed that the timetable of AxD was set strictly by a cell-intrinsic mechanism independent of neuron-extrinsic processes later activated by axon fragmentation. However, using a rare human disease model of neuropathy caused by hypomorphic NMNAT2 mutations and chronic SARM1 activation (sarmopathy), we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to cell-intrinsic metabolic failure. Investigating potential SARM1-dependent signals that mediate macrophage recognition and/or engulfment of stressed-but-viable axons, we found that chronic SARM1 activation triggers axonal blebbing and dysregulation of phosphatidylserine (PS), a potent phagocyte immunomodulatory molecule. Neuronal expression of the phosphatidylserine lipase ABDH12 suppresses nerve macrophage activation, preserves motor axon integrity, and rescues motor function in this chronic sarmopathy model. We conclude that PS dysregulation is an early SARM1-dependent axonal stress signal, and that blockade of phagocytic recognition and engulfment of stressed-but-viable axons could be an attractive therapeutic target for management of neurological disorders involving SARM1 activation.