Summary Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans 1–3 . In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites 4,5 . One such taurine metabolite is N-acetyltaurine 6 . Levels of N-acetyltaurine are dynamically regulated by diverse physiologic perturbations that alter taurine and/or acetate flux, including endurance exercise 7 , nutritional taurine supplementation 8 , and alcohol consumption 6,9 . While taurine N-acetyltransferase activity has been previously detected in mammalian cells 6,7 , the molecular identity of this enzyme, and the physiologic relevance of N-acetyltaurine, have remained unknown. Here we show that the orphan body mass index-associated enzyme PTER (phosphotriesterase-related) 10 is the principal mammalian taurine N-acetyltransferase/hydrolase. In vitro, recombinant PTER catalyzes bidirectional taurine N-acetylation with free acetate as well as the reverse N-acetyltaurine hydrolysis reaction. Genetic ablation of PTER in mice results in complete loss of tissue taurine N-acetyltransferase/hydrolysis activities and systemic elevation of N-acetyltaurine levels. Upon stimuli that increase taurine levels, PTER-KO mice exhibit lower body weight, reduced adiposity, and improved glucose homeostasis. These phenotypes are recapitulated by administration of N-acetyltaurine to wild-type mice. Lastly, the anorexigenic and anti-obesity effects of N-acetyltaurine require functional GFRAL receptors. Together, these data uncover enzymatic control of a previously enigmatic pathway of secondary taurine metabolism linked to energy balance.