The obligate intracellular parasite Toxoplasma gondii is auxotrophic for several key metabolites and must scavenge these from the host. It is unclear how Toxoplasma manipulates host metabolism for its overall growth rate and non-essential metabolites. To address this question, we measured changes in the joint host-parasite metabolome over a time course of infection. Host and parasite transcriptomes were simultaneously generated to determine potential changes in metabolic enzyme levels. Toxoplasma infection increased activity in multiple metabolic pathways, including the tricarboxylic acid cycle, the pentose phosphate pathway, glycolysis, amino acid synthesis, and nucleotide metabolism. Our analysis indicated that changes in some pathways, such as the tricarboxylic acid cycle, derive from the parasite, while changes in others, like the pentose phosphate pathway, were host and parasite driven. Further experiments led to the discovery of a Toxoplasma enzyme, sedoheptulose bisphosphatase, which funnels carbon from glycolysis into ribose synthesis through a energetically driven dephosphorylation reaction. This second route for ribose synthesis resolves a conflict between the Toxoplasma tricarboxylic acid cycle and pentose phosphate pathway, which are both NADP+ dependent. During periods of high energetic and ribose need, the competition for NADP+ could result in lethal redox imbalances. Sedoheptulose bisphosphatase represents a novel step in Toxoplasma central carbon metabolism that allows Toxoplasma to satisfy its ribose demand without using NADP+. Sedoheptulose bisphosphatase is not present in humans, highlighting its potential as a drug target.