BD
Breck Duerkop
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(77% Open Access)
Cited by:
1,400
h-index:
29
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A composite bacteriophage alters colonization by an intestinal commensal bacterium

Breck Duerkop et al.Oct 8, 2012
The mammalian intestine is home to a dense community of bacteria and its associated bacteriophage (phage). Virtually nothing is known about how phages impact the establishment and maintenance of resident bacterial communities in the intestine. Here, we examine the phages harbored by Enterococcus faecalis, a commensal of the human intestine. We show that E. faecalis strain V583 produces a composite phage (ΦV1/7) derived from two distinct chromosomally encoded prophage elements. One prophage, prophage 1 (ΦV1), encodes the structural genes necessary for phage particle production. Another prophage, prophage 7 (ΦV7), is required for phage infection of susceptible host bacteria. Production of ΦV1/7 is controlled, in part, by nutrient availability, because ΦV1/7 particle numbers are elevated by free amino acids in culture and during growth in the mouse intestine. ΦV1/7 confers an advantage to E. faecalis V583 during competition with other E. faecalis strains in vitro and in vivo. Thus, we propose that E. faecalis V583 uses phage particles to establish and maintain dominance of its intestinal niche in the presence of closely related competing strains. Our findings indicate that bacteriophages can impact the dynamics of bacterial colonization in the mammalian intestinal ecosystem.
0
Citation227
0
Save
0

Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes

Manuel Kleiner et al.Jan 21, 2015
Viruses are a significant component of the intestinal microbiota in mammals. In recent years, advances in sequencing technologies and data analysis techniques have enabled detailed metagenomic studies investigating intestinal viromes (collections of bacteriophage and eukaryotic viral nucleic acids) and their potential contributions to the ecology of the microbiota. An important component of virome studies is the isolation and purification of virus-like particles (VLPs) from intestinal contents or feces. Several methods have been applied to isolate VLPs from intestinal samples, yet to our knowledge, the efficiency and reproducibility between methods have not been explored. A rigorous evaluation of methods for VLP purification is critical as many studies begin to move from descriptive analyses of virus diversity to studies striving to quantitatively compare viral abundances across many samples. Therefore, reproducible VLP purification methods which allow for high sample throughput are needed. Here we compared and evaluated four methods for VLP purification using artificial intestinal microbiota samples of known bacterial and viral composition.We compared the following four methods of VLP purification from fecal samples: (i) filtration + DNase, (ii) dithiothreitol treatment + filtration + DNase, (iii) filtration + DNase + PEG precipitation and (iv) filtration + DNase + CsCl density gradient centrifugation. Three of the four tested methods worked well for VLP purification. We observed several differences between methods related to the removal efficiency of bacterial and host DNAs and biases against specific phages. In particular the CsCl density gradient centrifugation method, which is frequently used for VLP purification, was most efficient in removing host derived DNA, but also showed strong discrimination against specific phages and showed a lower reproducibility of quantitative results.Based on our data we recommend the use of methods (i) or (ii) for large scale studies when quantitative comparison of viral abundances across samples is required. The CsCl density gradient centrifugation method, while being excellently suited to achieve highly purified samples, in our opinion, should be used with caution when performing quantitative studies.
0
Citation190
0
Save
1

Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium

Gregory Canfield et al.Sep 23, 2020
Abstract Enterococcus faecium , a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium , three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR , and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium . Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could potentially serve as antimicrobial adjuvants in treating E. faecium infections.
1
Citation5
0
Save
0

Enterococcus faecalisCRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine

Valerie Price et al.May 2, 2018
Abstract CRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions in in vivo models relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogens in vivo , and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids. Enterococcus faecalis is a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessed E. faecalis CRISPR-Cas anti-PRP activity in the mouse intestine and under varying in vitro conditions. We observed striking differences in CRISPR-Cas efficiency in vitro versus in vivo . With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, while in vitro , the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standard in vitro experiments do not adequately model the in vivo anti-plasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparent in vitro anti-plasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor/recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal human microbiota can have significant impacts on in vivo antibiotic resistance dissemination. Importance CRISPR-Cas is a type of immune system encoded by bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under varying in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis . We conclude that standard laboratory experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains. Moreover, our results demonstrate that CRISPR-Cas encoded by native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.
0
Citation4
0
Save
0

Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria

Anushila Chatterjee et al.May 11, 2020
Abstract Bacteriophages (phages) are being considered as alternative therapeutics for the treatment of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. We have discovered that lytic phage infection induces transcription of type VIIb secretion system (T7SS) genes in the pathobiont Enterococcus faecalis . Membrane damage during phage infection induces T7SS gene expression resulting in cell contact dependent antagonism of different Gram positive bystander bacteria. Deletion of essB , a T7SS structural component, abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene expression and bystander inhibition requires IreK, a serine/threonine kinase, and OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of membrane targeting and DNA damaging antibiotics activated T7SS expression independent of phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could impose collateral damage to polymicrobial communities. Author Summary Renewed interest in phages as alternative therapeutics to combat multi-drug resistant bacterial infections, highlights the importance of understanding the consequences of phage-bacteria interactions in the context of microbial communities. Although it is well established that phages are highly specific for their host bacterium, there is no clear consensus on whether or not phage infection (and thus phage therapy) would impose collateral damage to non-target bacteria in polymicrobial communities. Here we provide direct evidence of how phage infection of a clinically relevant pathogen triggers an intrinsic type VII secretion system (T7SS) antibacterial response that consequently restricts the growth of neighboring bacterial cells that are not susceptible to phage infection. Phage induction of T7SS activity is a stress response and in addition to phages, T7SS antagonism can be induced using sub-inhibitory concentrations of antibiotics that facilitate membrane or DNA damage. Together these data show that a bacterial pathogen responds to diverse stressors to induce T7SS activity which manifests through the antagonism of neighboring non-kin bystander bacterial cells.
0
Citation2
0
Save
1

Genome-wide mutagenesis identifies factors involved inEnterococcus faecalisvaginal adherence and persistence

Norhan Alhajjar et al.Apr 30, 2020
ABSTRACT Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin resistant and sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro , but did not contribute to colonization in vivo . Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5 and 8 days post-inoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract. IMPORTANCE Despite increasing prevalence and association of E. faecalis with aerobic vaginitis, essentially nothing is known about the bacterial factors that influence E. faecalis vaginal colonization. We have adapted an animal model of vaginal colonization that supports colonization of multiple E. faecalis strains. Additionally, we determined that ethanolamine utilization and type VII secretion system genes contribute to vaginal colonization and persistence. Identification of factors important for vaginal colonization and persistence provides potential targets for the development of therapeutics. This study is the first to identify key determinants that promote vaginal colonization by E. faecalis , which may represent an important reservoir for antibiotic resistant enterococci.
1
Citation2
0
Save
38

Targeted IS-element sequencing uncovers transposition dynamics during selective pressure in enterococci

Joshua Kirsch et al.Aug 24, 2022
Abstract Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in both E. faecalis and E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis , indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health. Author Summary Insertion sequence (IS) elements are simple transposons that are ubiquitous in bacteria. In the enterococci, which includes medically relevant species such as Enterococcus faecalis and Enterococcus faecium , the IS element IS256 is widespread and has been implicated in pathogenesis and antibiotic resistance. Despite the importance of IS256 to the biology of the enterococci, we know very about how this element is regulated and diversifies enterococcal genomes. Here, we show that IS256 is preferentially found in hospital-adapted and virulent strains of the enterococci. In E. faecalis V583, a vancomycin resistant blood isolate, IS256 is regulated by multiple transcriptional mechanisms. To understand how IS256 is mobilized, we adapted an Illumina-based deep sequencing method called IS-Seq to find novel IS256 insertions when applying the selective pressure of bacteriophage (phage) predation. Using this method, we found that chronic phage infection drives IS256 diversification of the E. faecalis V583 genome. Additionally, we tracked IS256 insertional activity during a human E. faecium infection and found that increased IS256 diversity was associated with specific antibiotic usage. Together, our results demonstrate that the enterococci control IS256 activity to diversify their genomes which may lead to the emergence of hospital-adapted strains that threaten human health.
38
Citation1
0
Save
Load More