GA
Gro Amdam
Author with expertise in Genomic Insights into Social Insects and Symbiosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(94% Open Access)
Cited by:
4,772
h-index:
62
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reproductive protein protects functionally sterile honey bee workers from oxidative stress

Siri-Christine Seehuus et al.Jan 17, 2006
Research on aging shows that regulatory pathways of fertility and senescence are closely interlinked. However, evolutionary theories on social species propose that lifelong care for offspring can shape the course of senescence beyond the restricted context of reproductive capability. These observations suggest that control circuits of aging are remodeled in social organisms with continuing care for offspring. Here, we studied a circuit of aging in the honey bee ( Apis mellifera ). The bee is characterized by the presence of a long-lived reproductive queen caste and a shorter-lived caste of female workers that are life-long alloparental care givers. We focus on the role of the conserved yolk precursor gene vitellogenin that, in Caenorhabditis elegans , shortens lifespan as a downstream element of the insulin/insulin-like growth factor signaling cascade. Vitellogenin protein is synthesized at high levels in honey bee queens and is abundant in long-lived workers. We establish that vitellogenin gene activity protects worker bees from oxidative stress. Our finding suggests that one mechanistic explanation for patterns of longevity in bees is that a reproductive regulatory pathway has been remodeled to extend life. This perspective is of considerable relevance to research on longevity regulation that builds largely on inference from solitary model species.
0
Citation536
0
Save
0

The Gene vitellogenin Has Multiple Coordinating Effects on Social Organization

C. Nelson et al.Feb 27, 2007
Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes.
0
Citation492
0
Save
0

Social exploitation of vitellogenin

Gro Amdam et al.Feb 3, 2003
Vitellogenin is a female-specific glucolipoprotein yolk precursor produced by all oviparous animals. Vitellogenin expression is under hormonal control, and the protein is generally synthesized directly before yolk deposition. In the honeybee ( Apis mellifera ), vitellogenin is not only synthesized by the reproductive queen, but also by the functionally sterile workers. In summer, the worker population consists of a hive bee group performing a multitude of tasks including nursing inside the nest, and a forager group specialized in collecting nectar, pollen, water, and propolis. Vitellogenin is synthesized in large quantities by hive bees. When hive bees develop into foragers, their juvenile hormone titers increase, and this causes cessation of their vitellogenin production. This inverse relationship between vitellogenin synthesis and juvenile hormone is opposite to the norm in insects, and the underlying proximate processes and life-history reasons are still not understood. Here we document an alternative use of vitellogenin by showing that it is a source for the proteinaceous royal jelly that is produced by the hive bees. Hive bees use the jelly to feed larvae, queen, workers, and drones. This finding suggests that the evolution of a brood-rearing worker class and a specialized forager class in an advanced eusocial insect society has been directed by an alternative utilization of yolk protein.
0
Citation378
0
Save
0

The genomes of two key bumblebee species with primitive eusocial organization

Ben Sadd et al.Apr 13, 2015
The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
0
Citation367
0
Save
0

Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees

Gro Amdam et al.Apr 10, 2004
A striking example of plasticity in life span is seen in social insects such as ants and bees, where different castes may display distinct ageing patterns. In particular, the honeybee offers an intriguing illustration of environmental control on ageing rate. Honeybee workers display a temporal division of labour where young bees (or 'hive bees') perform tasks within the brood nest, and older bees forage for nectar, pollen propolis and water. When bees switch from the hive bee to the forager stage, their cellular defence machinery is down-regulated by a dramatic reduction in the number of functioning haemocytes (immunocytes). This study documents that the yolk precursor vitellogenin is likely to be involved in a regulatory pathway that controls the observed decline in somatic maintenance function of honeybee foragers. An association between the glyco-lipoprotein vitellogenin and immune function has not previously been reported for any organism. Honeybee workers are functionally sterile, and via the expression of juvenile hormone, a key gonotrophic hormone in adult insects, their vitellogenin levels are influenced by social interactions with other bees. Our results therefore suggest that in terms of maintenance of the cellular immune system, senescence of the honeybee worker is under social control.
0
Citation351
0
Save
0

The Making of a Queen: TOR Pathway Is a Key Player in Diphenic Caste Development

Avani Patel et al.Jun 5, 2007
Honey bees (Apis mellifera) provide a principal example of diphenic development. Excess feeding of female larvae results in queens (large reproductives). Moderate diet yields workers (small helpers). The signaling pathway that links provisioning to female developmental fate is not understood, yet we reasoned that it could include TOR (target of rapamycin), a nutrient- and energy-sensing kinase that controls organismal growth.Here, the role of Apis mellifera TOR (amTOR) in caste determination is examined by rapamycin/FK506 pharmacology and RNA interference (RNAi) gene knockdown. We show that in queen-destined larvae, the TOR inhibitor rapamycin induces the development of worker characters that are blocked by the antagonist FK506. Further, queen fate is associated with elevated activity of the Apis mellifera TOR encoding gene, amTOR, and amTOR gene knockdown blocks queen fate and results in individuals with worker morphology.A much-studied insect dimorphism, thereby, can be governed by the TOR pathway. Our results present the first evidence for a role of TOR in diphenic development, and suggest that adoption of this ancestral nutrient-sensing cascade is one evolutionary pathway for morphological caste differentiation in social insects.
0
Citation299
0
Save
0

Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin

Heli Salmela et al.Jul 31, 2015
Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.
0
Citation234
0
Save
Load More