DP
David Perrais
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(67% Open Access)
Cited by:
2,810
h-index:
31
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis

Marcus Taylor et al.Mar 22, 2011
Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein-tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼ 2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼ 1,000 recruitment profiles to their respective scission events and constructed characteristic "recruitment signatures" that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes.
0

Shiga toxin induces tubular membrane invaginations for its uptake into cells

Winfried Römer et al.Nov 29, 2007
Clathrin seems to be dispensable for some endocytic processes and, in several instances, no cytosolic coat protein complexes could be detected at sites of membrane invagination. Hence, new principles must in these cases be invoked to account for the mechanical force driving membrane shape changes. Here we show that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes. In cells, tubule occurrence increases on energy depletion and inhibition of dynamin or actin functions. Our data thus demonstrate that active cellular processes are needed for tubule scission rather than tubule formation. We conclude that the B-subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules. Our findings support a model in which the lateral growth of B-subunit–Gb3 microdomains is limited by the invagination process, which itself is regulated by membrane tension. The physical principles underlying this basic cargo-induced membrane uptake may also be relevant to other internalization processes, creating a rationale for conceptualizing the perplexing diversity of endocytic routes. An imaging study of an early step of bacterial toxin intake into cells — membrane invagination — reveals a cargo-induced mechanism that may also apply to other pathogens and more generally to other endocytosis events. The B subunit of Shiga toxin (from Shigella dysenteriae) is seen to enter cells via narrow tubular membrane invaginations. The toxin induces membrane reorganization prior to formation of tubular invaginations, which occurs independently of protein complexes (like clathrin) that have been ascribed membrane deforming capacities, and also when cellular energy is depleted. So membrane invagination relies on physical principles and can occur spontaneously, without the need for sophisticated cellular machinery. A study of endocytosis of Shigella toxin shows that it enters cells via narrow tubular membrane invaginations, with similar properties on cell and model membranes. The toxin induces membrane reorganisation before the formation of tubular invaginations.
0

SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism

Christelle Durand et al.May 24, 2011
Genetic mutations of SHANK3 have been reported in patients with intellectual disability, autism spectrum disorder (ASD) and schizophrenia. At the synapse, Shank3/ProSAP2 is a scaffolding protein that connects glutamate receptors to the actin cytoskeleton via a chain of intermediary elements. Although genetic studies have repeatedly confirmed the association of SHANK3 mutations with susceptibility to psychiatric disorders, very little is known about the neuronal consequences of these mutations. Here, we report the functional effects of two de novo mutations (STOP and Q321R) and two inherited variations (R12C and R300C) identified in patients with ASD. We show that Shank3 is located at the tip of actin filaments and enhances its polymerization. Shank3 also participates in growth cone motility in developing neurons. The truncating mutation (STOP) strongly affects the development and morphology of dendritic spines, reduces synaptic transmission in mature neurons and also inhibits the effect of Shank3 on growth cone motility. The de novo mutation in the ankyrin domain (Q321R) modifies the roles of Shank3 in spine induction and morphology, and actin accumulation in spines and affects growth cone motility. Finally, the two inherited mutations (R12C and R300C) have intermediate effects on spine density and synaptic transmission. Therefore, although inherited by healthy parents, the functional effects of these mutations strongly suggest that they could represent risk factors for ASD. Altogether, these data provide new insights into the synaptic alterations caused by SHANK3 mutations in humans and provide a robust cellular readout for the development of knowledge-based therapies.
0
Citation295
0
Save
0

Membrane lipid poly-unsaturation selectively affects ligand induced dopamine D2 receptor internalization

Rim Baccouch et al.Dec 16, 2023
Abstract The poly-unsaturation of membrane phospholipids is an important feature for the biophysical properties of membranes and membrane proteins. In particular, it regulates the function of some G protein-coupled receptors (GPCR), such as their binding to ligand and G proteins or their membrane diffusion. However, its effects on GPCR internalization and trafficking remain unknown. The brain is highly enriched in poly-unsaturated fatty acids (PUFAs) and ω3-PUFAs deficiency has been associated with several neuropsychiatric disorders. Importantly, the Dopamine D2 receptor (D2R), a class A GPCR, is consistently impacted in these disorders and represents the main target of most antipsychotics. Here we show that enrichment in two different PUFAs strongly impairs agonist-induced endocytosis of D2R in HEK293 cells, without affecting clathrin-mediated endocytosis or β2 adrenergic receptor endocytosis. Using live cell TIRF imaging, we show that D2R clustering is not affected, but that recruitment of β-arrestin2 is strongly impaired and endocytic vesicle formation is slowed down. We conclude that PUFAs are involved in D2R trafficking, which could influence its role in the control of brain activity and behavior.
0

Specific nanoscale synaptic reshuffling and control of short-term plasticity following NMDAR- and P2XR-dependent Long-Term Depression

Benjamin Compans et al.Sep 8, 2019
Long-Term Potentiation (LTP) and Long-Term Depression (LTD) of excitatory synaptic transmission are considered as cellular basis of learning and memory. These two forms of synaptic plasticity have been mainly attributed to global changes in the number of synaptic AMPA-type glutamate receptor (AMPAR) through a regulation of the diffusion/trapping balance at the PSD, exocytosis and endocytosis. While the precise molecular mechanisms at the base of LTP have been intensively investigated, the ones involved in LTD remains elusive. Here we combined super-resolution imaging technique, electrophysiology and modeling to describe the various modifications of AMPAR nanoscale organization and their effect on synaptic transmission in response of two different LTD protocols, based on the activation of either NMDA receptors or P2X receptors. While both LTDs are associated with a decrease in synaptic AMPAR clustering, only NMDAR-dependent LTD is associated with a reorganization of PSD95 at the nanoscale. This change increases the pool of diffusive AMPAR improving synaptic short-term facilitation through a post-synaptic mechanism. These results demonstrate that specific dynamic reorganization of synapses at the nanoscale during specific LTD paradigm allows to improve the responsiveness of depressed synapses.
10

ALG-2 interacting protein-X (Alix) is required for activity-dependent bulk endocytosis at brain synapses

Marine Laporte et al.Jul 22, 2020
Abstract In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity dependent bulk endocytosis (ADBE). Alix (ALG-2 interacting protein X)/ PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with, and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ABDE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix alters synaptic recovery during physiological or pathological repeated stimulations.
Load More