MZ
Marc Zuckermann
Author with expertise in Gliomas
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1,216
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes

Matthew Clarke et al.Apr 2, 2020
Abstract Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an “intrinsic” spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. Significance: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion–positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype. See related video: https://vimeo.com/438254885 See related commentary by Szulzewsky and Cimino, p. 904. This article is highlighted in the In This Issue feature, p. 890
0
Citation199
0
Save
6

Establishment of a simplified preparation method for single-nucleus RNA-sequencing and its application to long-term frozen tumor tissues

Kati Ernst et al.Oct 23, 2020
Abstract Recent advances allowing the genomic analysis of individual cells from a bulk population have provided intriguing new insights into areas such as developmental processes and tumor heterogeneity. Most approaches to date, however, rely on the availability of fresh surgical specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. Pediatric central nervous system tumors – the leading cause of childhood cancer deaths – represent one such example, where often only frozen rather than native material is available. Due to an increasing need for advanced techniques to understand the heterogeneity of these tumors, we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We performed a technical comparison between different single nucleus RNA-sequencing (snRNA-seq) systems using a patient-derived xenograft model as a test sample. Further, we applied the established nucleus isolation method to analyze frozen primary tissue from two pediatric central nervous system tumors – one pilocytic astrocytoma and one glioblastoma – allowing the identification of distinct tumor cell populations and infiltrating microglia. The results show that our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used in both droplet-based 3’ transcriptome amplification (10X Genomics) and plate-based whole transcriptome amplification (Fluidigm C1) single-cell sequencing platforms, thereby dramatically increasing the potential for application of such methods to rare entities.
6
Citation8
0
Save
99

Mapping pediatric brain tumors to their origins in the developing cerebellum

Konstantin Okonechnikov et al.Dec 20, 2021
Understanding the cellular origins of childhood brain tumors is key for discovering novel tumor-specific therapeutic targets. Previous strategies mapping cellular origins typically involved comparing human tumors to murine embryonal tissues 1,2 , a potentially imperfect approach due to spatio-temporal gene expression differences between species 3 . Here we use an unprecedented single-nucleus atlas of the developing human cerebellum (Sepp, Leiss, et al) and extensive bulk and single-cell transcriptome tumor data to map their cellular origins with focus on three most common pediatric brain tumors – pilocytic astrocytoma, ependymoma, and medulloblastoma. Using custom bioinformatics approaches, we postulate the astroglial and glial lineages as the origins for posterior fossa ependymomas and radiation-induced gliomas (secondary tumors after medulloblastoma treatment), respectively. Moreover, we confirm that SHH, Group3 and Group4 medulloblastomas stem from granule cell/unipolar brush cell lineages, whereas we propose pilocytic astrocytoma to originate from the oligodendrocyte lineage. We also identify genes shared between the cerebellar lineage of origin and corresponding tumors, and genes that are tumor specific; both gene sets represent promising therapeutic targets. As a common feature among most cerebellar tumors, we observed compositional heterogeneity in terms of similarity to normal cells, suggesting that tumors arise from or differentiate into multiple points along the cerebellar “lineage of origin”.
99
Citation4
0
Save
0

Capmatinib is an effective treatment for MET-fusion driven pediatric high-grade glioma and synergizes with radiotherapy

Marc Zuckermann et al.Jun 7, 2024
Abstract Background Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. Methods To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. Results Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. Conclusions We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.
0

Loss of the Familial Dysautonomia gene Elp1 in cerebellar granule cell progenitors leads to ataxia in mice

F. Manz et al.Mar 27, 2024
Abstract Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have been described. ELP1 is highly expressed in the normal developing and adult cerebellum, but its role in cerebellum development is unknown. To investigate the cerebellar function of Elp1, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1 cKO ) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent 7 days after birth, when Elp1 cKO animals also exhibited fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 within the developing cerebellum, and suggests that Elp1 loss in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.