PC
Philippe Corbisier
Author with expertise in Predicting Antioxidant Activity of Phenolic Compounds
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
1,044
h-index:
32
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals

Etienne Pigeolet et al.Feb 1, 1990
Glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase are the most important enzymes of the cell antioxidant defense system. However, these molecules are themselves susceptible to oxidation. The aim of this work was to estimate to what extent this system could be inactivated by its own substrates. We tested the effect of hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and hydroxyl and superoxide radicals on GPX, SOD and catalase. For GPX, a 50% inactivation was observed at 10−1 M (30 min, 37°C) for hydrogen peroxide, 3 × 10−4 M (15 min, 37°C) for cumene hydroperoxide and 5 × 10−5 M (11 min, 37°C) for t-butyl hydroperoxide. Unlike the hydroxyl radicals, superoxide anions did not inactivate this enzyme. Catalase was inactivated by hydroxyl radicals and by superoxide anions but organic peroxides had no effect. SOD was inactivated by 50% by hydrogen peroxide at 4 × 10−4 M (20 min, 37°C), but organic peroxides and hydroxyl radicals were ineffective on this enzyme. Since the three enzymes of the antioxidant system are susceptible to at least one of the oxidative reactive molecules, in the case of high oxidative stresses such an inhibition could take place, leading to an irreverisble autocatalytical process in which the production rate of the oxidants will continuously increase, leading to cell death.
0

CCQM-P199b: Interlaboratory comparability study of SARS-CoV-2 RNA copy number quantification

Alison Devonshire et al.Mar 27, 2024
ABSTRACT Nucleic acid amplification tests including reverse transcription quantitative PCR (RT-qPCR) are used to detect RNA from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Standardized measurements of RNA can facilitate comparable performance of laboratory tests in the absence of existing reference measurement systems early on in a pandemic. Interlaboratory study CCQM P199b “SARS-CoV-2 RNA copy number quantification” was designed to test the fitness-for-purpose of developed candidate reference measurement procedures (RMPs) for SARS-CoV-2 genomic targets in purified RNA materials, and was conducted under the auspices of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) to evaluate the measurement comparability of national metrology institutes (NMIs) and designated institutes (DIs), thereby supporting international standardization. Twenty-one laboratories participated in CCQM P199b and were requested to report the RNA copy number concentration, expressed in number of copies per microliter, of the SARS-CoV-2 nucleocapsid ( N ) gene partial region (NC_045512.2: 28274-29239) and envelope ( E ) gene (NC_045512.2: 26245-26472) (optional measurements) in samples consisting of in vitro transcribed RNA or purified RNA from lentiviral constructs. Materials were provided in two categories: lower concentration (≈ (10 1 -10 4 ) /μL in aqueous solution containing human RNA background) and high concentration (≈ 10 9 /μL in aqueous solution without any other RNA background). For the measurement of N gene concentration in the lower concentration study materials, the majority of laboratories ( n = 17) used one-step reverse transcription-digital PCR (RT-dPCR), with three laboratories applying two-step RT-dPCR and one laboratory RT-qPCR. Sixteen laboratories submitted results for E gene concentration. Reproducibility (% CV or equivalent) for RT-dPCR ranged from 19 % to 31 %. Measurements of the high concentration study material by orthogonal methods (isotope dilution-mass spectrometry and single molecule flow cytometry) and a gravimetrically linked lower concentration material were in a good agreement, suggesting a lack of overall bias in RT-dPCR measurements. However methodological factors such as primer and probe (assay) sequences, RT-dPCR reagents and dPCR partition volume were found to be potential sources of interlaboratory variation which need to be controlled when applying this technique. This study demonstrates that the accuracy of RT-dPCR is fit-for-purpose as a RMP for viral RNA target quantification in purified RNA materials and highlights where metrological approaches such as the use of in vitro transcribed controls, orthogonal methods and measurement uncertainty evaluation can support standardization of molecular methods.
0
Paper
Citation1
0
Save