DO
Dimitry Ofengeim
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,288
h-index:
26
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS

Yasushi Ito et al.Aug 4, 2016
+18
A
D
Y
Axonal pathology and necroptosis in ALS Necroptosis, a non–caspase-dependent form of cell death, can be reduced in disease states by inhibiting a kinase called RIPK1. Until now, no human mutations have been linked to necroptosis. Ito et al. show that loss of optineurin, which is encoded by a gene that has been implicated in the human neurodegenerative disorder ALS (amyotrophic lateral sclerosis), results in sensitivity to necroptosis and axonal degeneration. When RIPK1-kinase dependent signaling is disrupted in mice that lack optineurin, necroptosis is inhibited and axonal pathology is reversed. Science , this issue p. 603
0
Citation487
0
Save
0

Activation of Necroptosis in Multiple Sclerosis

Dimitry Ofengeim et al.Mar 1, 2015
+17
B
Y
D

Summary

 Multiple sclerosis (MS), a common neurodegenerative disease of the CNS, is characterized by the loss of oligodendrocytes and demyelination. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine implicated in MS, can activate necroptosis, a necrotic cell death pathway regulated by RIPK1 and RIPK3 under caspase-8-deficient conditions. Here, we demonstrate defective caspase-8 activation, as well as activation of RIPK1, RIPK3, and MLKL, the hallmark mediators of necroptosis, in the cortical lesions of human MS pathological samples. Furthermore, we show that MS pathological samples are characterized by an increased insoluble proteome in common with other neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Finally, we show that necroptosis mediates oligodendrocyte degeneration induced by TNF-α and that inhibition of RIPK1 protects against oligodendrocyte cell death in two animal models of MS and in culture. Our findings demonstrate that necroptosis is involved in MS and suggest that targeting RIPK1 may represent a therapeutic strategy for MS.
0

TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging

Daichao Xu et al.Aug 23, 2018
+17
H
T
D
Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1−/− mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/− mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.
0
Citation344
0
Save
66

Microglia ferroptosis is prevalent in neurodegenerative disease and regulated by SEC24B

Sean Ryan et al.Nov 2, 2021
+19
C
M
S
Abstract Iron dysregulation has been implicated in multiple neurodegenerative diseases, including Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS). One prominent feature of affected brain regions are iron-loaded microglia, but how iron overload influences microglia physiology and disease response is poorly understood. Here we show that microglia are highly susceptible to ferroptosis, an iron-dependent form of cell death. In a tri-culture of human iPSC-derived neurons, astrocytes, and microglia, under ferroptosis-inducing conditions, microglia undergo a drastic shift in cell state, with increased ferritin levels, disrupted glutathione homeostasis, and altered cytokine signaling. Similar ferroptosis-associated signature (FAS) microglia were uncovered in PD, and the signature was also found in a large cohort of PD patient blood samples, raising the possibility that ferroptosis can be identified clinically. We performed a genome-wide CRISPR screen which revealed a novel regulator of ferroptosis, the vesicle trafficking gene SEC24B. A small molecule screen also nominated several candidates which blocked ferroptosis, some of which are already in clinical use. These data suggest that ferroptosis sits at the interface of cell death and inflammation, and inhibition of this process in microglia and other brain cells may provide new ways for treating neurodegenerative disease.
66
Citation3
0
Save
1

Disrupted microglial iron homeostasis in progressive multiple sclerosis

Jonathan Proto et al.May 10, 2021
+11
S
M
J
ABSTRACT Multiple Sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS). Despite therapies that reduce relapses, many patients eventually develop secondary progressive MS (SPMS), characterized by ongoing and irreversible neurodegeneration and worsening clinical symptoms. Microglia are the resident innate immune cells of the CNS. While the cellular and molecular determinants of disability progression in MS remain incompletely understood, they are thought to include non-resolving microglial activation and chronic oxidative injury. In this study, our aim was to better characterize microglia in SPMS tissues to identify disease-related changes at the single cell level. We performed single nucleus RNA-seq (snRNA-seq) on cryopreserved post-mortem brain cortex and identified disease associated changes in multiple cell types and in particular distinct SPMS-enriched microglia subsets. When compared to the cluster most enriched in healthy controls (i.e. homeostatic microglia), we found a number of SPMS-enriched clusters with transcriptional profiles reflecting increased oxidative stress and perturbed iron homeostasis. Using histology and RNA-scope, we confirmed the presence of iron accumulating, ferritin-light chain ( FTL )-expressing microglia in situ . Among disease-enriched clusters, we found evidence for divergent responses to iron accumulation and identified the antioxidant enzyme GPX4 as a key fate determinant. These data help elucidate processes that occur in progressive MS brains, and highlight novel nodes for therapeutic intervention.
1
Citation3
0
Save
0

Glucosylceramide synthase modulation ameliorates murine renal pathologies and promotes macrophage effector function in vitro

Agnes Cheong et al.Aug 2, 2024
+22
H
F
A
While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8jck), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease. Single nuclei analysis identified robust transcriptional changes across multiple kidney cell types, including epithelial and immune lineages. To further explore the role of GSL modulation in macrophage biology, we performed in vitro studies with homeostatic and inflammatory bone marrow-derived macrophages. Cumulatively, this study provides a comprehensive overview of renal dysfunction and the effect of GSL modulation on kidney-derived cells in the setting of renal dysfunction. This study identifies shared immune-related gene signatures across kidney cell types in three distinct mouse models of renal disease and examines the role of glycosphingolipid metabolism in renal dysfunction.
0

Localized calcium accumulations prime synapses for phagocyte removal in cortical neuroinflammation

Mehrnoosh Jafari et al.Sep 4, 2019
+16
N
A
M
Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. Here we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread but transient loss of dendritic spines. Spines destined for removal show a local calcium accumulation and are subsequently removed by invading macrophages and activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.
0

Comparative CNS Pharmacology of the Bruton’s Tyrosine Kinase (BTK) Inhibitor Tolebrutinib Versus Other BTK Inhibitor Candidates for Treating Multiple Sclerosis

Timothy Turner et al.Jun 1, 2024
D
R
P
T
Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS METHODS: We used in vitro kinase and cellular activation assays, alongside pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS.
0

Comparative CNS Pharmacology of the Brutons Tyrosine Kinase (BTK) Inhibitor Tolebrutinib Versus Other BTK Inhibitor Candidates for Treating Multiple Sclerosis.

Timothy Turner et al.Mar 29, 2024
D
R
P
T
Abstract Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS, employing in vitro kinase, cellular activation assays, and pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS. In vitro kinase assays demonstrated that tolebrutinib reacted with BTK 65-times faster than evobrutinib, while fenebrutinib, a classical reversible antagonist with a K i value of 4.7 nM and slow off-rate (1.54 x 10 −5 s -1 ), also had an association rate 1760-fold slower (3.28 x 10 3 M -1 * s -1 ). Estimates of cellular potency were largely consistent with the in vitro kinase assays, with an estimated IC50 of 0.7 nM for tolebrutinib against 34.5 nM for evobrutinib and 2.9 nM for fenebrutinib. We then observed that evobrutinib, fenebrutinib, and tolebrutinib achieved similar levels of exposure in non-human primate CSF after oral doses of 10 mg/kg. However, tolebrutinib CSF exposure (4.8 ng/mL) (kp,uu CSF=0.40) exceeded the IC90 (the estimated concentration inhibiting 90% of kinase activity) value, while evobrutinib (3.2 ng/mL) (kp,uu CSF=0.13) and fenebrutinib (12.9 ng/mL) (kp,uu CSF=0.15) failed to reach the estimated IC90 values. We conclude that tolebrutinib is the only candidate that attained relevant CSF exposure in non-human primates. DISCLOSURES TT, PB, DO: Employees of Sanofi (may hold shares and/or stock options in the company). RG none.
0

Glial state changes and neuroinflammatory RIPK1 signaling are a key feature of ALS pathogenesis

Matija Zelic et al.Apr 15, 2024
+18
B
F
M
Abstract Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes motor neuron loss in the brain and spinal cord. Neuroinflammation driven by activated microglia and astrocytes is prominent in ALS, but an understanding of cell state dynamics and which pathways contribute to the disease remains unclear. Single nucleus RNA sequencing of ALS spinal cords demonstrated striking changes in glial cell states, including increased expression of inflammatory and glial activation markers. Many of these signals converged on RIPK1 and the necroptotic cell death pathway. Activation of the necroptosis pathway in ALS spinal cords was confirmed in a large bulk RNA sequencing dataset and at the protein level. Blocking RIPK1 kinase activity delayed symptom onset and motor impairment and modulated glial responses in SOD1 G93A mice. We used a human iPSC-derived motor neuron, astrocyte, and microglia tri-culture system to identify potential biomarkers secreted upon RIPK1 activation, inhibited pharmacologically in vitro , and modulated in the CSF of people with ALS treated with a RIPK1 inhibitor. These data reveal ALS-enriched glial populations associated with inflammation and suggest a deleterious role for neuroinflammatory signaling in ALS pathogenesis.