DL
Delphine Legrand
Author with expertise in Evolutionary Dynamics of Genetic Adaptation and Mutation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
19
h-index:
20
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transgenerational dispersal plasticity and its fitness consequences are under genetic control

Hugo Cayuela et al.Oct 2, 2019
Abstract Phenotypic plasticity, the ability of one genotype to produce different phenotypes in different environments, plays a central role in species’ response to environmental changes. Transgenerational plasticity (TGP) allows the transmission of this environmentally-induced phenotypic variation across generations, and can influence adaptation. To date, the genetic control of TGP, its long-term stability, and its potential costs remain largely unknown, mostly because empirical demonstrations of TGP across many generations in several genetic backgrounds are scarce. Here, we examined how genotype determines the TGP of dispersal, a fundamental process in ecology and evolution. We used an experimental approach involving ~200 clonal generations in a model-species of ciliate to determine if and how TGP influences the expression of dispersal-related traits in several genotypes. Our results show that morphological and movement traits associated with dispersal are plastic, and that these modifications are inherited over at least 35 generations. We also highlight that genotype modulates the fitness costs and benefits associated with plastic dispersal strategies. Our study suggests that genotype-dependent TGP could play a critical role in eco-evolutionary dynamics as dispersal determines gene flow and the long-term persistence of natural populations. More generally, it outlines the tremendous importance that genotype-dependent TGP could have in the ability of organisms to cope with current and future environmental changes. Significance The genetic control of the transgenerational plasticity is still poorly understood despite its critical role in species responses to environmental changes. We examined how genotype determines transgenerational plasticity of a complex trait ( i.e. , dispersal) in a model-species of ciliate across ~200 clonal generations. Our results provide evidence that plastic phenotypic variation linked to dispersal is stably inherited over tens of generations and that cell genotype modulates the expression and fitness cost of transgenerational plasticity.
0
Citation5
0
Save
0

The interplay between abiotic and biotic factors in dispersal decisions in metacommunities

Mélanie Thierry et al.Jun 24, 2024
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue ‘Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics’.
0
Citation4
0
Save
0

Species interactions affect dispersal: a meta-analysis

Elvire Bestion et al.Jun 24, 2024
Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
0
Paper
Citation4
0
Save
0

Evolutionary ecology of dispersal in biodiverse spatially structured systems: what is old and what is new?

Emanuel Fronhofer et al.Jun 24, 2024
Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution—increased trait dimensionality of biodiverse meta-systems—and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more ‘diffuse’ evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
0
Citation3
0
Save
5

Dispersal syndromes affect ecosystem functioning in ciliate microcosms

Allan Raffard et al.Feb 19, 2021
Abstract Dispersal is a key process mediating ecological and evolutionary dynamics. Its effects on metapopulations dynamics, population genetics or species range distribution can depend on phenotypic differences between dispersing and non-dispersing individuals ( i.e ., dispersal syndromes). However, scaling up to the importance of dispersal syndromes for meta-ecosystems have rarely been considered, despite intraspecific phenotypic variability is now recognised as an important factor mediating ecosystem functioning. In this study, we characterised the intraspecific variability of dispersal syndromes in twenty isolated genotypes of the ciliate Tetrahymena thermophila to test their consequences for biomass productivity in communities composed of five Tetrahymena species. To do so, dispersers and residents of each genotype were introduced, each separately, in ciliate communities composed of four other competing species of the genus Tetrahymena to investigate the effects of dispersal syndromes. We found that introducing dispersers led to a lower biomass compared to introducing residents. This effect was highly consistent across the twenty T. thermophila genotypes despite their marked differences of dispersal syndromes. Finally, we found a strong genotypic effect on biomass production, confirming that intraspecific variability in general affected ecosystem functions in our system. Our study shows that intraspecific variability and the existence of dispersal syndromes can impact the functioning of spatially structured ecosystems in a consistent and therefore predictable way.
5
Citation2
0
Save
0

Phenotypic plasticity and the effects of thermal fluctuations on specialists and generalists

Staffan Jacob et al.Jun 1, 2024
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms’ performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
0
Citation1
0
Save
1

The macronuclear genomic landscape within Tetrahymena thermophila

Romain Derelle et al.Oct 3, 2023
Abstract The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic microorganisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila , a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena , we confirm micronuclear centromeres as gene diversification centres in T. thermophila , but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes encoding for extracellular proteins and cell adhesion. We discuss all these findings in relation with ciliate’s ecology and cellular characteristics. Impact Statement This is the first study of population genomics in the ciliate Tetrahymena thermophila . This bacterivore species plays an important role in aquatic trophic chains and is widely used as a model in cell and molecular biology, ecology, evolution or toxicology. As all ciliates, it contains a germline micronucleus and a somatic macronucleus. Sequencing of the macronucleus reveals that the centromeric region of the micronucleus are simultaneously a region of new gene diversification, as observed in other Tetrahymena species, and a region containing highly conserved genes. The results also confirm that the formation of the macronucleus from the micronucleus is highly imprecise. Interestingly, this process generates a genomic barcode that can discriminate cells derived from a given sexual reproduction event, allowing to study more finely population dynamics/history in nature. Data summary All data are fully provided in Supplementary Materials. The raw data of the 22 Tetrahymena genomes have been deposited in the Sequence Read Archive ( https://www-ncbi-nlm-nih-gov.inee.bib.cnrs.fr/bioproject/PRJNA1012331 ). Accession numbers are listed in Table S1 (available in the online version of this article).
0

Bottom-up and top-down control of dispersal across major organismal groups: a coordinated distributed experiment

Emanuel Fronhofer et al.Nov 2, 2017
Organisms rarely experience a homogeneous environment. Rather, ecological and evolutionary dynamics unfold in spatially structured and fragmented landscapes, with dispersal as the central process linking these dynamics across spatial scales. Because dispersal is a multi-causal and highly plastic life-history trait, finding general drivers that are of importance across species is challenging but highly relevant for ecological forecasting. We here tested whether two fundamental ecological forces and main determinants of local population dynamics, top-down and bottom-up control, generally explain dispersal in spatially structured communities. In a coordinated distributed experiment spanning a wide range of actively dispersing organisms, from protozoa to vertebrates, we show that bottom-up control, that is resource limitation, consistently increased dispersal. While top-down control, that is predation risk, was an equally important dispersal driver as bottom-up control, its effect depended on prey and predator space use and whether dispersal occurred on land, in water or in the air: species that routinely use more space than their predators showed increased dispersal in response to predation, specifically in aquatic environments. After establishing these general causes of dispersal, we used a metacommunity model to show that bottom-up and top-down control of dispersal has important consequences for local population fluctuations as well as cascading effects on regional metacommunity dynamics. Context-dependent dispersal reduced local population fluctuations and desynchronized dynamics between communities, two effects that increase population and community stability. Our study provides unprecedented insights into the generality of the positive resource dependency of dispersal as well as a robust experimental test of current theory predicting that predator-induced dispersal is modulated by prey and predator space use. Our experimental and theoretical work highlights the critical importance of the multi-causal nature of dispersal as well as its cascading effects on regional community dynamics, which are specifically relevant to ecological forecasting.
0

GENETIC DIVERSITY AFFECTS ECOSYSTEM FUNCTIONS ACROSS TROPHIC LEVELS AS MUCH AS SPECIES DIVERSITY, BUT IN AN OPPOSITE DIRECTION

Laura Fargeot et al.Mar 30, 2024
Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yield similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels (primary producers, primary consumers, and secondary consumers) in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity (gauged within three pivotal species) within each trophic level, evaluating seven key ecosystem functions, and analyzing the strength of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persists across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.
1

Plastic cell morphology changes during dispersal

Anthony Junker et al.Jun 14, 2021
Summary Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often found to be plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through a panel of plastic motility-associated changes to cell morphology and motile cilia. Graphical abstract Highlights Tetrahymena thermophila exhibits intra-specific diversity in morphology and dispersal. Cell motility behavior during dispersal changes with cilia length and cell shape. Cells from proficient dispersing strains transiently change basal body and cilia position. Starvation-induced dispersal triggers increased basal body and cilia density and caudal cilium formation in rapid-swimming cells.