MC
Marvin Chun
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
11
h-index:
21
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

A brain-based universal measure of attention: predicting task-general and task-specific attention performance and their underlying neural mechanisms from task and resting state fMRI

Kwangsun Yoo et al.Feb 13, 2021
Abstract Attention is central for many aspects of cognitive performance, but there is no singular measure of a person’s overall attentional functioning across tasks. To develop a universal measure that integrates multiple components of attention, we collected data from more than 90 participants performing three different attention-demanding tasks during fMRI. We constructed a suite of whole-brain models that can predict a profile of multiple attentional components – sustained attention, divided attention and tracking, and working memory capacity – from a single fMRI scan type within novel individuals. Multiple brain regions across the frontoparietal, salience, and subcortical networks drive accurate predictions, supporting a universal (general) attention factor across tasks, which can be distinguished from task-specific attention factors and their neural mechanisms. Furthermore, connectome-to-connectome transformation modeling enhanced predictions of an individual’s attention-task connectomes and behavioral performance from their rest connectomes. These models were integrated to produce a new universal attention measure that generalizes best across multiple, independent datasets, and which should have broad utility for both research and clinical applications.
4

Representing Multiple Visual Objects in the Human Brain and Convolutional Neural Networks

Viola Mocz et al.Mar 1, 2023
Objects in the real world often appear with other objects. To recover the identity of an object whether or not other objects are encoded concurrently, in primate object-processing regions, neural responses to an object pair have been shown to be well approximated by the average responses to each constituent object shown alone, indicating the whole is equal to the average of its parts. This is present at the single unit level in the slope of response amplitudes of macaque IT neurons to paired and single objects, and at the population level in response patterns of fMRI voxels in human ventral object processing regions (e.g., LO). Here we show that averaging exists in both single fMRI voxels and voxel population responses in human LO, with better averaging in single voxels leading to better averaging in fMRI response patterns, demonstrating a close correspondence of averaging at the fMRI unit and population levels. To understand if a similar averaging mechanism exists in convolutional neural networks (CNNs) pretrained for object classification, we examined five CNNs with varying architecture, depth and the presence/absence of recurrent processing. We observed averaging at the CNN unit level but rarely at the population level, with CNN unit response distribution in most cases did not resemble human LO or macaque IT responses. The whole is thus not equal to the average of its parts in CNNs, potentially rendering the individual objects in a pair less accessible in CNNs during visual processing than they are in the human brain.