SF
Shih‐Jung Fan
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
7
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Accessory ESCRT-III proteins selectively regulate Rab11-exosome biogenesis inDrosophilasecondary cells

Pauline Marie et al.Jun 18, 2020
Abstract Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in multivesicular endosomes, which subsequently fuse with the plasma membrane. These ILVs are made in both late endosomes and recycling endosomes, the latter marked by the small GTPase Rab11 and generating exosomes with different cargos and functions. Core proteins within four Endosomal Sorting Complex Required for Transport (ESCRT) assemblies (0-III) play key sequential roles in late endosomal exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos through the endolysosomal system. They also control additional cellular processes, such as cytokinesis and other vesicle budding. By contrast, the functions of several accessory ESCRTs are not well defined. Here we assess the ESCRT-dependency of Rab11-exosomes, using RNA knockdown in Drosophila secondary cells (SCs) of the male accessory gland, which have unusually enlarged Rab11-positive compartments. Unexpectedly, not only are core proteins in all four ESCRT complexes required for Rab11-exosome formation, but also accessory ESCRT-III proteins, CHMP1, CHMP5 and IST1. Suppressing expression of these accessory proteins does not affect other aspects of cell morphology, unlike most core ESCRT knockdowns, and does not lead to accumulation of ubiquitinylated cargos. We conclude that accessory ESCRT-III components have a specific and potentially ubiquitin-independent role in Rab11-exosome generation, which might provide a target for blocking the pro-tumorigenic activities of these vesicles in cancer.
3
Citation5
0
Save
0

Anti-androgens induce Rab11a-exosome secretion in prostate cancer by suppressing amino acid-sensitive PAT4-mTORC1 signalling

Kristie McCormick et al.Sep 19, 2020
Abstract Advanced prostate cancer is typically treated with anti-androgens to reduce cancer growth, but patients almost inevitably develop treatment resistance and castration-resistant disease. Recently, extracellular vesicles known as exosomes, which are secreted from the endosomal compartments in which they are formed, have been implicated in drug resistance mechanisms. Here we investigate whether growth regulation by the amino acid-dependent kinase complex, mechanistic Target of Rapamycin Complex 1 (mTORC1), and associated extracellular vesicle secretion might be involved in the adaptive responses to anti-androgens. We show that expression and intracellular localisation of the glutamine-sensing PAT4 (SLC36A4) amino acid transporter is increased in malignant versus benign prostatic tissue, mirroring earlier in vivo fly studies suggesting that these transporters are more effective at promoting growth from internal versus cell surface membranes. Furthermore, androgens induce PAT4 expression in prostate cancer cell lines and PAT4 is required for a proportion of androgen-stimulated mTORC1 activation and growth. Consistent with previous studies in other cancer cell lines, we find that glutamine depletion, PAT4 knockdown and mTORC1 inhibition all independently increase the production of a specific exosome subtype, Rab11a-exosomes, which has recently been implicated in pro-tumorigenic signalling responses to mTORC1 inhibition. Furthermore, we show that these exosomes are also induced by anti-androgens. We hypothesise that the uptake of Rab11a-exosomes by cells with higher PAT4 levels could provide a growth-promoting boost, enabling them to out-compete others with lower PAT4 expression, resulting in tumours that are more resistant to nutrient-deprivation and anti-androgen treatment.
0
Citation1
0
Save
0

Stress‐induced Rab11a‐exosomes induce amphiregulin‐mediated cetuximab resistance in colorectal cancer

John Mason et al.Jun 1, 2024
Abstract Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G‐protein Rab11a. These vesicles, termed Rab11a‐exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a‐exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non‐genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG‐carrying Rab11a‐exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a‐exosomes from cetuximab‐resistant KRAS‐mutant HCT116 cells, can suppress the effects of cetuximab on KRAS‐wild type Caco‐2 CRC cells. Using neutralising anti‐AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a‐exosomes affects its ability to compete with cetuximab. We propose that this Rab11a‐exosome‐mediated mechanism contributes to the establishment of resistance in cetuximab‐sensitive cells and may explain why in cetuximab‐resistant tumours only some cells carry mutant KRAS.
0
Citation1
0
Save
0

APP and β-amyloid modulate protein aggregation and dissociation from recycling endosomal and exosomal membranes

Preman Singh et al.Mar 30, 2024
Summary Secretory proteins frequently aggregate into non-soluble dense-core granules (DCGs) in recycling endosome-like compartments prior to release. By contrast, aberrantly processed Aβ-peptides derived from Amyloid Precursor Protein (APP) form pathological amyloidogenic aggregations in late-stage Alzheimer’s Disease (AD) after secretion. By examining living Drosophila prostate-like secondary cells, we show both APP and Aβ-peptides affect normal DCG biogenesis. These cells generate DCGs and secreted nanovesicles called Rab11-exosomes within enlarged recycling endosomes. The fly APP homologue, APP-like (APPL), associates with Rab11-exosomes and the compartmental limiting membrane, from where its extracellular domain controls protein aggregation. Proteolytic release of this membrane-associated domain permits aggregates to coalesce into a large central DCG. Mutant Aβ-peptide expression, like Appl loss-of-function, disrupts this assembly step and compartment motility, and increases lysosomal targeting, mirroring pathological events reported in early-stage AD. Our data therefore reveal a physiological role for APP in membrane-dependent protein aggregation, which when disrupted, rapidly triggers AD-relevant intracellular pathologies.
0

Glutamine deprivation regulates the origin and function of cancer cell exosomes

Shih‐Jung Fan et al.Dec 2, 2019
Exosomes are secreted extracellular vesicles (EVs) carrying diverse cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of these exosomes from cancer cells is increased by reducing Akt/mechanistic Target of Rapamycin (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. The resulting vesicles promote tumour cell proliferation and turnover, and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against Amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release of Rab11a-exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.
4

DrosophilaSex Peptide Controls the Assembly of Lipid Microcarriers in Seminal Fluid

S. Wainwright et al.Apr 25, 2020
Abstract Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behaviour. In the fruit fly, Drosophila melanogaster , Sex Peptide (SP) is the best-characterised protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term post-mating responses including ovulation, elevated feeding and reduced receptivity to remating, primarily signalling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating, where they rapidly disassemble. Remarkably, SP is a key assembly factor for microcarriers and is also required for the female disassembly process to occur normally. Males expressing non-functional SP mutant proteins that affect SP’s binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread defects in ejaculate function. Our data therefore reveal a novel role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species, which lack the signalling functions seen in D. melanogaster . Significance Statement Seminal fluid plays a critical role in reprogramming female physiology and behaviour to promote male reproductive success. We show in the fruit fly that specific seminal proteins, including the archetypal ‘female-reprogramming’ molecule Sex Peptide, are stored in male seminal secretions in association with large neutral lipid-containing microcarriers, which rapidly disperse in females. Related structures are also observed in other Sex Peptide-expressing Drosophila species. Males lacking Sex Peptide have structurally defective microcarriers, leading to abnormal cargo loading and transfer to females. Our data reveal that this key signalling molecule in Drosophila seminal fluid is also a microcarrier assembly factor that controls transfer of other seminal factors, and that this may be a more evolutionarily ancient role of this protein.
0

Stress-induced Rab11a-exosomes induce AREG-mediated cetuximab resistance in colorectal cancer

John Mason et al.Dec 20, 2023
Abstract Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the Epidermal Growth Factor Receptor (EGFR) ligand, Amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS. Graphical Abstract This study highlights a clinically relevant mechanism in which stress-induced Rab11a-exosomes carrying the EGFR ligand, Amphiregulin (AREG) transfer drug resistance between genetically distinct colorectal cancer cells. Resistance to cetuximab, an anti-EGFR therapy, can be passed via Rab11a-exosomes from drug-resistant KRAS-mutant cells to previously drug-responsive KRAS-wild type cells. Unlike soluble AREG, Rab11a-exosome-associated AREG competes with cetuximab to activate EGFR signalling and promote EGFR-dependent outcomes, such as growth. This mechanism may support the co-operative evolution of clonal heterogeneity during tumour progression.