YZ
Ying Zhan
Author with expertise in Engineering Bacteria for Cancer Treatment
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effect of Assembly Method on Nanoparticle Attachment Density, Growth Rate, and Motility of Nanoscale Bacteria Enabled Autonomous Drug Delivery System (NanoBEADS)

Ying Zhan et al.Dec 6, 2019
Microbial-mediated drug delivery systems have the potential to significantly enhance the efficacy of nanomedicine for cancer therapy through improved specificity and interstitial transport. The Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) is a bacteria-based bio-hybrid drug delivery system designed to carry nanotherapeutics cargo deep into poorly vascularized cancerous tissue. The effect of the bacteria-nanoparticle conjugation method and NanoBEADS assembly parameters (i.e., mixing method, volume, and duration) was investigated to maximize particle attachment density. The nanoparticle attachment capacity, viability, growth rate and motility of the original NanoBEADS and an antibody-free variant NanoBEADS were characterized and compared. It is found that the assembly parameters affect the attachment outcome and the binding mechanism impacts the attachment number, the growth rate and motility of NanoBEADS. The NanoBEADS platform provides an opportunity to load nanoparticles with different materials and sizes for applications beyond cancer therapy, such as imaging agents for high-resolution medical imaging.
0

Tumor Stroma Content Regulates Penetration and Efficacy of Tumor-targeting Bacteria

Ying Zhan et al.Mar 30, 2024
Abstract Bacteria-based cancer therapy (BBCT) strains grow selectively in primary tumors and metastases, colonize solid tumors independent of genetics, and kill cells resistant to standard molecular therapy. Clinical trials of BBCT in solid tumors have not reported any survival advantage yet, partly due to the limited bacterial colonization. Collagen, abundant in primary and metastatic solid tumors, has a well-known role in hindering intratumoral penetration of therapeutics. Nevertheless, the effect of collagen content on the intratumoral penetration and antitumor efficacy of BBCT is rarely unexplored. We hypothesized that the presence of collagen limits the penetration and, thereby, the antitumor effects of tumor-selective Salmonella . Typhimurium VNP20009 cheY + . We tested our hypothesis in low and high collagen content tumor spheroid models of triple-negative murine breast cancer. We found that high collagen content significantly hinders bacteria transport in tumors, reducing bacteria penetration and distribution by ∼7-fold. The higher penetration of bacteria in low collagen-content tumors led to an overwhelming antitumor effect (∼73% increase in cell death), whereas only a 28% increase in cell death was seen in the high collagen-content tumors. Our mathematical modeling of intratumoral bacterial colonization delineates the role of growth and diffusivity, suggesting an order of magnitude lower diffusivity in the high collagen-content tumors dominates the observed outcomes. Finally, our single-cell resolution analysis reveals a strong spatial correlation between bacterial spatial localization and collagen content, further corroborating that collagen acts as a barrier to bacterial penetration despite S . Typhimurium VNP20009 cheY + motility. Understanding the effect of collagen on BBCT performance could lead to engineering more efficacious BBCT strains capable of overcoming this barrier to colonization of primary tumors and metastases.