CS
Charles Schleifer
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
323
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor

Katrin Preller et al.Oct 25, 2018
Background: Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown. Methods: We therefore conducted a double-blind, randomized, counterbalanced, cross-over studyduring which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT2A receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps. Results: LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans. Conclusions: Together, these results strongly implicate the 5-HT2A receptor in LSD’s neuropharmacology. This study therefore pinpoints the critical role of 5-HT2A in LSD’s mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics. Funding: Funded by the Swiss National Science Foundation, the Swiss Neuromatrix Foundation, the Usona Institute, the NIH, the NIAA, the NARSAD Independent Investigator Grant, the Yale CTSA grant, and the Slovenian Research Agency. Clinical trial number: NCT02451072 .
2

Ketamine induces multiple individually distinct whole-brain functional connectivity signatures

Flora Moujaes et al.Nov 1, 2022
Background Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects. Methods We conducted a double-blind placebo-controlled study in which 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hour). We quantified resting-state functional connectivity via data-driven global brain connectivity, related it to individual ketamine-induced symptom variation, and compared it to cortical gene expression targets. Results We found that: i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, implicating the role of SST and PVALB interneurons in ketamine’s acute effects; and iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions Collectively, these findings support the possibility for developing individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420); Swiss Neuromatrix Foundation (Grant No. 2016–0111m Grant No. 2015 – 010); Swiss National Science Foundation under the frame-work of Neuron Cofund (Grant No. 01EW1908), Usona Institute (2015 – 2056).
2
Citation4
0
Save
0

Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome

Filomena Alvino et al.Mar 31, 2024
Abstract Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper-to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3β, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.
0

Schizophrenia Exhibits Bi-Directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits

Jie Ji et al.Jul 24, 2017
Distributed neural dysconnectivity is considered a hallmark feature of schizophrenia, yet a tension exists between studies pinpointing focal disruptions versus those implicating brain-wide disturbances. The cerebellum and the striatum communicate reciprocally with the thalamus and cortex through monosynaptic and polysynaptic connections, forming cortico-striatal-thalamic-cerebellar (CSTC) functional pathways that may be sensitive to brain-wide dysconnectivity in schizophrenia. It remains unknown if the same pattern of alterations persists across CSTC systems, or if specific alterations exist along key functional elements of these networks. We characterized connectivity along major functional CSTC subdivisions using resting-state functional magnetic resonance imaging in 159 chronic patients and 162 matched controls. Associative CSTC subdivisions revealed consistent brain-wide bi-directional alterations in patients, marked by hyper-connectivity with sensory-motor cortices and hypo-connectivity with association cortex. Focusing on the cerebellar and striatal components, we validate the effects using data-driven k-means clustering of voxel-wise dysconnectivity and support vector machine classifiers. We replicate these results in an independent sample of 202 controls and 145 patients, additionally demonstrating that these neural effects relate to cognitive performance across subjects. Taken together, these results from complementary approaches implicate a consistent motif of brain-wide alterations in CSTC systems in schizophrenia, calling into question accounts of exclusively focal functional disturbances.
0

Reciprocal Disruptions in Thalamic and Hippocampal Resting-State Functional Connectivity in Youth with 22q11.2 Deletions

Charles Schleifer et al.Nov 29, 2017
22q11.2 deletion syndrome (22q11DS) is a recurrent copy number variant (CNV) with high penetrance for developmental neuropsychiatric disorders. Study of individuals with 22q11DS therefore may offer key insights into neural mechanisms underlying such complex illnesses. Resting-state functional MRI (rs-fMRI) studies in idiopathic schizophrenia have consistently revealed disruption of thalamic and hippocampal circuitry. Here, we sought to test whether this circuitry is similarly disrupted in the context of this genetic high-risk condition. To this end, resting-state functional connectivity patterns were assessed in a sample of young men and women with 22q11DS (n=42) and demographically matched healthy controls (n=39). Neuroimaging data were acquired via single-band protocols, and analyzed in line with methods provided by the Human Connectome Project (HCP). We computed functional relationships between individual-specific anatomically-defined thalamic and hippocampal seeds and all gray matter voxels in the brain. Whole-brain type I error protection was achieved through nonparametric permutation-based methods. 22q11DS patients displayed reciprocal disruptions in thalamic and hippocampal functional connectivity relative to control subjects. Thalamo-cortical coupling was increased in sensorimotor cortex, and reduced across associative networks. The opposite effect was observed for the hippocampus in regards to sensory and associative network connectivity. The thalamic and hippocampal dysconnectivity observed in 22q11DS suggest that high genetic risk for psychiatric illness is linked with disruptions in large-scale cortico-subcortical networks underlying higher-order cognitive functions. These effects highlight the translational importance of large-effect CNVs for informing mechanisms underlying neural disruptions observed in idiopathic developmental neuropsychiatric disorders.
0

Unique functional neuroimaging signatures of genetic versus clinical high risk for psychosis

Charles Schleifer et al.Apr 5, 2024
Abstract Background 22q11.2 Deletion Syndrome (22qDel) is a copy number variant (CNV) associated with psychosis and other neurodevelopmental disorders. Adolescents at clinical high risk for psychosis (CHR) have subthreshold psychosis symptoms without known genetic risk factors. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped results to biological pathways. Methods We analyzed two large multi-site cohorts with resting-state functional MRI (rs-fMRI): 1) 22qDel (n=164, 47% female) and typically developing (TD) controls (n=134, 56% female); 2) CHR individuals (n=244, 41% female) and TD controls (n=151, 46% female) from the North American Prodrome Longitudinal Study-2. We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions, testing case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. Results BSV, LC, and GBC are significantly disrupted in 22qDel compared with TD controls (False Discovery Rate q<0.05). Spatial maps of BSV and LC differences are highly correlated with each other, unlike GBC. In CHR, only LC is significantly altered versus controls, with a different spatial pattern compared to 22qDel. Group differences map onto biological gradients, with 22qDel effects strongest in regions with high predicted blood flow and metabolism. Conclusion 22qDel and CHR exhibit divergent effects on fMRI temporal variability and multi-scale functional connectivity. In 22qDel, strong and convergent disruptions in BSV and LC not seen in CHR individuals suggest distinct functional brain alterations.
0

Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts

Han Wang et al.May 12, 2024
Abstract Background Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions. Methods A data-driven approach, Partial Least Squares (PLS) correlation, was used across two independent datasets to examine multivariate relationships between white matter (WM) properties and symptomatology, to identify stable and generalizable signatures in EP. The primary cohort included EP patients from the Human Connectome Project-Early Psychosis (n=124). The replication cohort included EP patients from the Feinstein Institute for Medical Research (n=78). Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. Results In both cohorts, a significant latent component (LC) corresponded to a symptom profile combining negative symptoms, primarily diminished expression, with specific somatic symptoms. Both LCs captured comprehensive features of WM disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the PLS model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. Conclusions This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural WM alterations in EP, across diagnoses and datasets, showing a strong covariance of these alterations with a unique profile of negative and somatic symptoms. This finding suggests the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
0

Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations

Charles Schleifer et al.Jan 1, 2023
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
1

Longitudinal development of thalamocortical functional connectivity in 22q11.2 deletion syndrome

Charles Schleifer et al.Jun 23, 2023
Abstract Background 22q11.2 Deletion Syndrome (22qDel) is a genetic Copy Number Variant (CNV) that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youth at clinical high risk (CHR) for psychosis. Here, we use a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in 22qDel and typically developing (TD) controls. Methods TCC was calculated for nine functional networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) scans collected from n=65 22qDel participants (63.1% female) and n=69 demographically matched TD controls (49.3% female), ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Non-linear age trajectories were characterized with general additive mixed models (GAMMs). Results In 22qDel, TCC in the frontoparietal network increases until approximately age 13, while somatomotor and cingulo-opercular TCC decrease from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD controls. Somatomotor connectivity in 22qDel is significantly higher than TD in childhood, but lower in late adolescence. Frontoparietal TCC shows the opposite pattern. Conclusions 22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than controls, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.
Load More