AE
Anira Escrichs
Author with expertise in Analysis of Brain Functional Connectivity Networks
Pompeu Fabra University, Brain and Cognition Research Center, Institut d'Investigació Biomédica de Bellvitge
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(94% Open Access)
Cited by:
107
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Microbiota alterations in proline metabolism impact depression

Jordi Mayneris‐Perxachs et al.May 10, 2022
+28
M
A
J
The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.
9
Paper
Citation92
12
Save
1

On the edge of criticality: strength-dependent perturbation unveils delicate balance between fluctuation and oscillation in brain dynamics

Yonatan Perl et al.Oct 24, 2023
+2
E
A
Y
Summary Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used a strength-dependent perturbative framework to provide a causal mechanistic description of how human brain function is perched at the delicate balance between fluctuation and oscillation. Applying local strength-dependent perturbations and subsequently measuring the perturbative complexity index clearly demonstrates that the overall balance of brain dynamics is shifted towards fluctuations for providing much needed flexibility. Importantly, stimulation in the fluctuation regime modulates specific resting state network, thus providing a mechanistic explanation of experimentally reported brain dynamics. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the strength-dependent perturbative framework demonstrates how the human brain is poised on the edge of criticality, between fluctuations to oscillations, allowing for maximal flexibility.
1
Citation7
0
Save
15

Unifying turbulent dynamics framework distinguishes different brain states

Anira Escrichs et al.Oct 24, 2023
+15
C
Y
A
Abstract Recently, significant advances have been made by identifying the levels of synchronicity of the underlying dynamics of a given brain state. This research has demonstrated that unconscious dynamics tend to be more synchronous than those found in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that the different brain states are always underpinned by spatiotemporal chaos but with dissociable turbulent dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep, and disorders of consciousness after coma) and were able to distinguish between them using complementary model-free and model-based measures of turbulent information transmission. Our model-free approach used recent advances describing a measure of information cascade across spatial scales using tools from turbulence theory. Complementarily, our model-based approach used exhaustive in silico perturbations of whole-brain models fitted to the empirical neuroimaging data, which allowed us to study the information encoding capabilities of the brain states. Overall, the current framework demonstrates that different levels of turbulent dynamics are fundamental for describing and differentiating between brain states.
15
Citation5
0
Save
1

Whole-brain dynamics in aging: disruptions in functional connectivity and the role of the rich club

Anira Escrichs et al.Oct 24, 2023
+16
J
C
A
Abstract Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state fMRI studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent (BOLD) signals to analyze resting-state fMRI data from 620 subjects divided into two groups (‘middle-age group’ (n=310); age range, 50-65 years vs. ‘older group’ (n=310); age range, 66-91 years). Applying the Intrinsic-Ignition Framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.
7

The effect of external stimulation on functional networks in the aging healthy human brain

Anira Escrichs et al.Oct 24, 2023
+19
N
Y
A
Abstract Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve as a more specific biomarker relating local activity with global brain dynamics. Here, we used a large resting-state fMRI dataset divided into middle-aged (N=310, aged < 65 years) and older adults (N=310, aged ≥ 65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space, each with a probabilistic occurrence and frequency. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations with different intensities in each node to force transitions from the brain states of the older group to the middle-age group. We found that the precuneus, a brain area belonging to the default mode network and the rich club, was the best stimulation target. These findings might have important implications for designing neurostimulation interventions to revert the effects of aging on whole-brain dynamics.
7
Citation1
0
Save
6

Disruption in structural-functional network repertoire and time-resolved subcortical-frontoparietal connectivity in disorders of consciousness

Rajanikant Panda et al.Oct 24, 2023
+8
A
A
R
Abstract Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, i.e. so-called eigenmodes, were supplemented as potential markers. By analysing time-resolved functional connectivity from fMRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and fronto-parietal subcortical network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the global neuronal workspace theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.
6
Citation1
0
Save
0

Whole-brain dynamics and hormonal fluctuations across the menstrual cycle: The role of progesterone and age in healthy women

Daniela Avila-Varela et al.Jun 2, 2024
+5
P
E
D
Abstract Recent neuroimaging research suggests that female sex hormone fluctuations modulate brain activity. Nevertheless, how brain network dynamics change across the female menstrual cycle remains largely unknown. Here, we investigated the dynamical complexity u nderlying three menstrual cycle phases (i.e., early follicular, pre-ovulatory, and mid-luteal) in 60 healthy naturally-cycling women scanned using resting-state fMRI. Our results revealed that the preovulatory phase exhibited the highest variability over time (node-metastability) across the whole-brain functional network compared to the early follicular and mid-luteal phases, while the early follicular showed the lowest. Additionally, we found that large-scale resting-state networks reconfigure along the menstrual cycle phases. Finally, we used multilevel mixed-effects models to examine the impact of hormonal fluctuations and age on whole-brain and resting-state networks. We found significant age-related changes across the whole brain, control, and dorsolateral attention networks. Additionally, we observed progesterone-related changes, specifically within limbic and somatomotor networks. Overall, these findings evidence that both age and progesterone modulate brain network dynamics along the menstrual cycle.
1

Whole-Brain Dynamics Disruptions in the Progression of Alzheimer's Disease: Understanding the Influence of Amyloid-Beta and Tau

Gustavo Patow et al.Apr 3, 2024
G
P
A
G
Alzheimer's disease (AD) affects brain structure and function along its evolution, but brain network dynamic changes remain largely unknown.To understand how AD shapes brain activity, we investigated the spatiotemporal dynamics and resting state functional networks using the intrinsic ignition framework, which characterizes how an area transmits neuronal activity to others, resulting in different degrees of integration. Healthy participants, MCI, and AD patients were scanned using resting state fMRI. Mixed effects models were used to assess the impact of ABeta and tau, at the regional and whole-brain levels.Dynamic complexity is progressively reduced, with Healthy participants showing higher metastability (i.e., a more complex dynamical regime over time) than observed in the other stages, while AD subjects showed the lowest.Our study provides further insight into how AD modulates brain network dynamics along its evolution, progressively disrupting the whole-brain and resting state network dynamics.
0

Whole-brain modelling supports the use of serotonergic psychedelics for the treatment of disorders of consciousness

I Mindlin et al.Dec 31, 2023
+13
L
R
I
Abstract Disorders of consciousness (DoC) are a challenging and complex group of neurological conditions characterised by absent or impaired awareness. The current range of therapeutic options for DoC patients is limited, offering few non-invasive pharmacological alternatives. This situation has sprung a growing interest in the development of novel treatments, such as the proposal to study the efficacy of 5HT2A receptor agonists (also known as psychedelics) to restore impaired consciousness. Given the ethical implications of exploring novel compounds in non-communicative individuals, we assessed in silico their effects in the whole-brain dynamics of DoC patients. We embedded the whole-brain activity of patients in a low-dimensional space, and then used this representation to visualise the effects of simulated neuromodulation across a range of receptors representing potential drug targets. Our findings show that activation of serotonergic and opioid receptors shifted brain dynamics of DoC patients towards patterns typically seen in conscious and awake individuals, and that this effect was mediated by the brain-wide density of activated receptors. These results showcase the role of whole-brain models in the discovery of novel pharmacological treatments for neuropsychiatric conditions, while also supporting the feasibility of accelerating the recovery of consciousness with serotonergic psychedelics.
7

Meditation-induced effects on whole-brain structural and effective connectivity

Eleonora Filippi et al.Oct 24, 2023
+4
E
A
E
Abstract In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in structural and functional connectivities (SC and FC, respectively). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain’s structure and function. First, we performed a network-based analysis of anatomical connectivity. Then, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals’ spatio-temporal structure, akin to FC with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. The whole-brain SC analysis revealed strengthened anatomical connectivity across large-scale networks for meditators compared to controls. We found that differences in SC were reflected in the functional domain as well. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. Using EC features we reached high performance for the condition-based classification within each group and moderately high accuracies when comparing the two groups in each condition. Moreover, we showed that the most informative EC links that discriminated between meditators and controls involved the same large-scale networks previously found to have increased anatomical connectivity. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.
Load More