JC
Jake Chen
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(60% Open Access)
Cited by:
10,774
h-index:
58
/
i10-index:
164
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.

Joseph Beckman et al.Feb 1, 1990
Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.
0

DisProt: the Database of Disordered Proteins

Megan Sickmeier et al.Dec 2, 2006
The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one experimentally determined disordered region. Although lacking fixed structure, IDPs and regions carry out important biological functions, being typically involved in regulation, signaling and control. Such functions can involve high-specificity low-affinity interactions, the multiple binding of one protein to many partners and the multiple binding of many proteins to one partner. These three features are all enabled and enhanced by protein intrinsic disorder. One of the major hindrances in the study of IDPs has been the lack of organized information. DisProt was developed to enable IDP research by collecting and organizing knowledge regarding the experimental characterization and the functional associations of IDPs. In addition to being a unique source of biological information, DisProt opens doors for a plethora of bioinformatics studies. DisProt is openly available at Author Webpage.
0
Citation761
0
Save
0

Silk implants for the healing of critical size bone defects

Lorenz Meinel et al.Sep 3, 2005
Bone (re)-generation and bone fixation strategies utilize biomaterial implants, which are gradually replaced by autologous tissues. Ideally, these biomaterials should be biodegradable, osteoconductive, and provide mechanical strength and integrity until newly formed host tissues can maintain function. Some protein-based biomaterials such as collagens are promising because of their biological similarities to natural proteins on bone surfaces. However, their use as bone implant materials is largely hampered by poor mechanical properties. In contrast, silks offer distinguishing mechanical properties that are tailorable, along with slow degradability to permit adequate time for remodeling. To assess the suitability of silk-based biomaterials as implants for bone healing, we explored the use of novel porous silk fibroin scaffolds as templates for the engineering of bone tissues starting from human bone marrow derived stem cells cultured under osteogenic conditions for up to 5 weeks. The slowly degrading protein matrix permitted adequate temporal control of hydroxyapatite deposition and resulted in the formation of a trabecular-like bone matrix in bioreactor studies. The organic and inorganic components of the engineered bone tissues resembled those of bone, as shown by gene expression analysis, biochemical assays, and X-ray diffractometry. Implantation of the tissue-engineered bone implants (grown in bioreactors for 5 weeks prior to implantation) into calvarial critical size defects in mice demonstrated the capacity of these systems to induce advanced bone formation within 5 weeks, whereas the implantation of stem cell loaded silk scaffolds, and scaffolds alone resulted in less bone formation. These results demonstrate the feasibility of silk-based implants with engineered bone for the (re-)generation of bone tissues and expand the class of protein-based bone-implant materials with a mechanically stable and durable option.
0
Paper
Citation447
0
Save
0

Disorder and Sequence Repeats in Hub Proteins and Their Implications for Network Evolution

Zsuzsanna Dosztányi et al.Oct 6, 2006
Protein interaction networks display approximate scale-free topology, in which hub proteins that interact with a large number of other proteins determine the overall organization of the network. In this study, we aim to determine whether hubs are distinguishable from other networked proteins by specific sequence features. Proteins of different connectednesses were compared in the interaction networks of Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens with respect to the distribution of predicted structural disorder, sequence repeats, low complexity regions, and chain length. Highly connected proteins ("hub proteins") contained significantly more of, and greater proportion of, these sequence features and tended to be longer overall as compared to less connected proteins. These sequence features provide two different functional means for realizing multiple interactions: (1) extended interaction surface and (2) flexibility and adaptability, providing a mechanism for the same region to bind distinct partners. Our view contradicts the prevailing view that scaling in protein interactomes arose from gene duplication and preferential attachment of equivalent proteins. We propose an alternative evolutionary network specialization process, in which certain components of the protein interactome improved their fitness for binding by becoming longer or accruing regions of disorder and/or internal repeats and have therefore become specialized in network organization. Keywords: disordered protein • unstructured protein • protein−protein interaction • interaction network • hub protein
0
Citation331
0
Save
0

Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis

Keshav Singh et al.Jun 8, 2020
Because of the ongoing pandemic around the world, the mechanisms underlying the SARS-CoV-2-induced COVID-19 are subject to intense investigation. Based on available data for the SARS-CoV-1 virus, we suggest how CoV-2 localization of RNA transcripts in mitochondria hijacks the host cell’s mitochondrial function to viral advantage. Besides viral RNA transcripts, RNA also localizes to mitochondria. SARS-CoV-2 may manipulate mitochondrial function indirectly, first by ACE2 regulation of mitochondrial function, and once it enters the host cell, open-reading frames (ORFs) such as ORF-9b can directly manipulate mitochondrial function to evade host cell immunity and facilitate virus replication and COVID-19 disease. Manipulations of host mitochondria by viral ORFs can release mitochondrial DNA (mtDNA) in the cytoplasm and activate mtDNA-induced inflammasome and suppress innate and adaptive immunity. We argue that a decline in ACE2 function in aged individuals, coupled with the age-associated decline in mitochondrial functions resulting in chronic metabolic disorders like diabetes or cancer, may make the host more vulnerable to infection and health complications to mortality. These observations suggest that distinct localization of viral RNA and proteins in mitochondria must play essential roles in SARS-CoV-2 pathogenesis. Understanding the mechanisms underlying virus communication with host mitochondria may provide critical insights into COVID-19 pathologies. An investigation into the SARS-CoV-2 hijacking of mitochondria should lead to novel approaches to prevent and treat COVID-19.
0
Citation324
0
Save
0

Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1

Jin Zhang et al.Feb 23, 2011
Abstract Dickkopf-related protein 1 (DKK1) is essential to maintain skeletal homeostasis as an inhibitor of Wnt signaling and osteogenic differentiation. The purpose of this study was to investigate the molecular mechanisms underlying the developmental stage–specific regulation of the DKK1 protein level. We performed a series of studies including luciferase reporter assays, micro-RNA microarray, site-specific mutations, and gain- and loss-of-function analyses. We found that the DKK1 protein level was regulated via DKK1 3' UTR by miRNA control, which was restricted to osteoblast-lineage cells. As a result of decreased DKK1 protein level by miR-335-5p, Wnt signaling was enhanced, as indicated by elevated GSK-3β phosphorylation and increased β-catenin transcriptional activity. The effects of miR-335-5p were reversed by anti-miR-335-5p treatment, which downregulated endogenous miR-335-5p. In vivo studies showed high expression levels of miR-335-5p in osteoblasts and hypertrophic chondrocytes of mouse embryos, indicating a pivotal role of miR-335-5p in regulating bone development. In conclusion, miR-335-5p activates Wnt signaling and promotes osteogenic differentiation by downregulating DKK1. This cell- and development-specific regulation is essential and mandatory for the initiation and progression of osteogenic differentiation. miR-335-5p proves to be a potential and useful targeting molecule for promoting bone formation and regeneration. © 2011 American Society for Bone and Mineral Research
0

Guidelines for Genome-Scale Analysis of Biological Rhythms

Michael Hughes et al.Oct 1, 2017
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
0
Citation243
0
Save
Load More