JM
Joseph Mancias
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
2,214
h-index:
41
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy

Joseph Mancias et al.Mar 28, 2014
+2
S
X
J
Through a quantitative proteomics analysis, a cohort of proteins is identified that associate with autophagosomes, among them a new cargo receptor called NCOA4 that, in response to iron deprivation, targets ferritin to autophagosomes and thereby releases iron. In selective autophagy, specific molecules known as cargo receptors bind to cargo molecules and target them to autophagosomes — vesicles that subsequently fuse with the cellular organelles lysosomes for enzymatic degradation of their content. Only a handful of such cargo receptors have been well characterized. Through quantitative proteomics analysis, Alec Kimmelman and co-workers have identified a cohort of proteins that associate with autophagosomes, among them a new cargo receptor, nuclear receptor coactivator 4 (NCOA4). Intriguingly, when deprived of iron, NCOA4 targets ferritin to autophagosomes, thereby releasing iron from its ferritin stores. These findings not only represent a cell biology resource, but also have implications for understanding iron metabolism. Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration1,2. Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo, including organelles, proteins or intracellular pathogens, are targeted for selective autophagy is limited3. Here we use quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins in human cells, including cargo receptors. Like known cargo receptors, nuclear receptor coactivator 4 (NCOA4) was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo–receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species4 but is degraded via autophagy to release iron5,6 through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin led to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy), which is critical for iron homeostasis, and provides a resource for further dissection of autophagosomal cargo–receptor connectivity.
0

Plasticity in binding confers selectivity in ligand-induced protein degradation

Radosław Nowak et al.Jun 8, 2018
+12
M
N
R
Heterobifunctional small-molecule degraders that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. However, we currently lack a detailed understanding of the molecular basis for target recruitment and selectivity, which is critically required to enable rational design of degraders. Here we utilize a comprehensive characterization of the ligand-dependent CRBN–BRD4 interaction to demonstrate that binding between proteins that have not evolved to interact is plastic. Multiple X-ray crystal structures show that plasticity results in several distinct low-energy binding conformations that are selectively bound by ligands. We demonstrate that computational protein–protein docking can reveal the underlying interprotein contacts and inform the design of a BRD4 selective degrader that can discriminate between highly homologous BET bromodomains. Our findings that plastic interprotein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands. Selectivity of ligand-induced protein degradation and dimerization is conferred by plastic interprotein contacts. Computational protein–protein docking reveals the underlying interprotein contacts to inform the design of a BRD4 selective degrader.
0

Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis

Joseph Mancias et al.Oct 5, 2015
+7
S
L
J
NCOA4 is a selective cargo receptor for the autophagic turnover of ferritin, a process critical for regulation of intracellular iron bioavailability. However, how ferritinophagy flux is controlled and the roles of NCOA4 in iron-dependent processes are poorly understood. Through analysis of the NCOA4-FTH1 interaction, we demonstrate that direct association via a key surface arginine in FTH1 and a C-terminal element in NCOA4 is required for delivery of ferritin to the lysosome via autophagosomes. Moreover, NCOA4 abundance is under dual control via autophagy and the ubiquitin proteasome system. Ubiquitin-dependent NCOA4 turnover is promoted by excess iron and involves an iron-dependent interaction between NCOA4 and the HERC2 ubiquitin ligase. In zebrafish and cultured cells, NCOA4 plays an essential role in erythroid differentiation. This work reveals the molecular nature of the NCOA4-ferritin complex and explains how intracellular iron levels modulate NCOA4-mediated ferritinophagy in cells and in an iron-dependent physiological setting.
0

Mechanisms of resistance to oncogenic KRAS inhibition in pancreatic cancer

Julien Dilly et al.Jul 8, 2024
+21
L
N
J
Abstract KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.
0
Citation4
0
Save
14

An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML

Shuo Lin et al.Dec 28, 2020
+18
B
C
S
Abstract CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancers, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro, evaluating the physiological relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to prioritize AML-enriched dependencies in vivo, complemented by the validation in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. Statement of significance There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, representing novel therapeutic opportunities.
14
Citation3
0
Save
0

Recharacterization of RSL3 reveals that the selenoproteome is a druggable target in colorectal cancer

Stephen DeAngelo et al.Apr 2, 2024
+22
Y
L
S
Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both
0
Citation2
0
Save
5

Intestinal ferritinophagy is regulated by HIF-2α and is essential for systemic iron homeostasis

Nupur Das et al.Nov 1, 2020
+7
A
A
N
Abstract Iron is critical for many processes including oxygen transport and erythropoiesis. Transcriptomic analysis demonstrates that HIF-2α regulates over 90% of all transcripts induced following iron deficiency in the intestine. However, beyond divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1) and duodenal cytochrome b (Dcytb), no other genes/pathways have been critically assessed with respects to their importance in intestinal iron absorption. Ferritinophagy is associated with cargo specific autophagic breakdown of ferritin and subsequent release of iron. We show here that nuclear receptor co-activator 4 (NCOA4)-mediated intestinal ferritinophagy is integrated to systemic iron demand via HIF-2α. Duodenal NCOA4 expression is regulated by HIF-2α during high systemic iron demands. Moreover, overexpression of intestinal HIF-2α is sufficient to activate NCOA4 and promote lysosomal degradation of ferritin. Promoter analysis revealed NCOA4 as a direct HIF-2α target. To demonstrate the importance of intestinal HIF-2α/ferritinophagy axis in systemic iron homeostasis, whole body and intestine-specific NCOA4-null mouse lines were assessed. These analyses demonstrate an iron sequestration in the enterocytes, and significantly high tissue ferritin levels in the dietary iron deficiency and acute hemolytic anemia models. Together, our data suggests efficient ferritinophagy is critical for intestinal iron absorption and systemic iron homeostasis.
5
Citation1
0
Save
0

De novo pyrimidine biosynthesis inhibition synergizes with BCL-XLtargeting in pancreatic cancer

Huan Zhang et al.May 21, 2024
+12
N
Q
H
Oncogenic KRAS, the genetic driver of 90% of pancreatic adenocarcinoma (PDAC), induces a metabolic rewiring characterized, in part, by dependency on de novo pyrimidine biosynthesis. Pharmacologic inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, delays pancreatic tumor growth in vivo; however, limited monotherapy efficacy suggests compensatory pathways and that combinatorial strategies are required for enhanced efficacy. Here, we use an integrated metabolomic, quantitative temporal proteomic and in vitro and in vivo DHODH inhibitor anchored CRISPR/Cas9 genetic screening approach to identify compensatory pathways to DHODH inhibition (DHODHi) and targets for combination strategies. We demonstrate that DHODHi alters the apoptotic regulatory proteome thereby enhancing sensitivity to inhibitors of the anti-apoptotic BCL2L1 (BCL-XL) protein. Combinatorial regimens with DHODH and BCL-XL inhibition synergistically induce apoptosis in PDAC cell lines and patient-derived PDAC organoids. In vivo DHODH inhibition with Brequinar and BCL-XL degradation with DT2216, a proteolysis targeting chimera (PROTAC), significantly inhibits the growth of PDAC tumors. Our data defines mechanisms of adaptation to DHODH inhibition and identifies a combination therapy strategy in PDAC.
0

Autophagosomes coordinate an AKAP11-dependent regulatory checkpoint that shapes neuronal PKA signaling

Ashley Segura-Roman et al.Aug 6, 2024
+6
M
Y
A
Protein Kinase A (PKA) is regulated spatially and temporally via scaffolding of its catalytic (Cα/β) and regulatory (RI/RII) subunits by the A-kinase-anchoring proteins (AKAP). PKA engages in poorly understood interactions with autophagy, a key degradation pathway for neuronal cell homeostasis, partly via its AKAP11 scaffold. Mutations in AKAP11 drive schizophrenia and bipolar disorders (SZ-BP) through unknown mechanisms. Through proteomic-based analysis of immunopurified lysosomes, we identify the Cα-RIα-AKAP11 holocomplex as a prominent autophagy-associated protein kinase complex. AKAP11 scaffolds Cα-RIα to the autophagic machinery via its LC3-interacting region (LIR), enabling both PKA regulation by upstream signals, and its autophagy-dependent degradation. We identify Ser83 on the RIα linker-hinge region as an AKAP11-dependent phospho-residue that modulates RIα-Cα binding and cAMP-induced PKA activation. Decoupling AKAP11-PKA from autophagy alters Ser83 phosphorylation, supporting an autophagy-dependent checkpoint for PKA signaling. Ablating AKAP11 in induced pluripotent stem cell-derived neurons reveals dysregulation of multiple pathways for neuronal homeostasis. Thus, the autophagosome is a novel platform that modulate PKA signaling, providing a possible mechanistic link to SZ/BP pathophysiology.
11

Covalent Disruptor of YAP-TEAD Association Suppresses Defective Hippo Signaling

Mengyang Fan et al.May 11, 2022
+24
T
Y
M
Abstract The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.
Load More