Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
WG
Walter Gassmann
Author with expertise in Molecular Responses to Abiotic Stress in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
3,185
h-index:
48
/
i10-index:
84
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation

Timothy Durrett et al.Mar 9, 2007
Iron, despite being an essential micronutrient, becomes toxic if present at high levels. As a result, plants possess carefully regulated mechanisms to acquire iron from the soil. The ferric reductase defective3 (frd3) mutant of Arabidopsis (Arabidopsis thaliana) is chlorotic and exhibits constitutive expression of its iron uptake responses. Consequently, frd3 mutants overaccumulate iron; yet, paradoxically, the frd3 phenotypes are due to a reduction in the amount of iron present inside frd3 leaf cells. The FRD3 protein belongs to the multidrug and toxin efflux family, members of which are known to export low-M(r) organic molecules. We therefore hypothesized that FRD3 loads an iron chelator necessary for the correct distribution of iron throughout the plant into the xylem. One such potential chelator is citrate. Xylem exudate from frd3 plants contains significantly less citrate and iron than the exudate from wild-type plants. Additionally, supplementation of growth media with citrate rescues the frd3 phenotypes. The ectopic expression of FRD3-GFP results in enhanced tolerance to aluminum in Arabidopsis roots, a hallmark of organic acid exudation. Consistent with this result, approximately 3 times more citrate was detected in root exudate from plants ectopically expressing FRD3-GFP. Finally, heterologous studies in Xenopus laevis oocytes reveal that FRD3 mediates the transport of citrate. These results all strongly support the hypothesis that FRD3 effluxes citrate into the root vasculature, a process important for the translocation of iron to the leaves, as well as confirm previous reports suggesting that iron moves through the xylem as a ferric-citrate complex. Our results provide additional answers to long-standing questions about iron chelation in the vasculature and organic acid transport.
0

The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes

Walter Gassmann et al.Nov 1, 1999
Plant-disease resistance (R) genes mediate the specific recognition of invading pathogens carrying cognate avirulence (avr) determinants. RPS4 is a disease-resistance locus on chromosome 5 of Arabidopsis thaliana specifying resistance to strains of Pseudomonas syringae pv. tomato expressing avrRps4. We have isolated the RPS4 gene using a map-based cloning approach. RPS4 encodes a predicted protein of 1217 amino acids that contains an N-terminus with homology to the intracellular domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor (TIR domain), a tripartite nucleotide-binding site (NBS), and leucine-rich repeats (LRR). Incomplete splicing of the RPS4 mRNA was observed, which may give rise to truncated protein products consisting mainly of the TIR and NBS domains. These features classify RPS4 as a member of the TIR-NBS-LRR R gene family founded by N, L6 and RPP5, which determine resistance to viral, fungal and oomycete pathogens, respectively. Previous work has shown that RPS4, like other Arabidopsis TIR-NBS-LRR R genes specifying resistance to oomycetes, is dependent on a functional EDS1 allele for disease-resistance signaling. The characterization of RPS4 presented here thus establishes a role for TIR-NBS-LRR R genes in resistance to bacterial pathogens, and provides evidence for the model that dependence of R genes on EDS1 is determined by R protein structure, and not by pathogen type. The cloning of RPS4 and the previous isolation of avrRps4 provide the molecular tools for a genetic and molecular dissection of the TIR-NBS-LRR R gene signaling pathway in Arabidopsis.
0
Citation391
0
Save
0

TheArabidopsisNitrate Transporter NRT1.8 Functions in Nitrate Removal from the Xylem Sap and Mediates Cadmium Tolerance

Jianyong Li et al.May 1, 2010
Abstract Long-distance transport of nitrate requires xylem loading and unloading, a successive process that determines nitrate distribution and subsequent assimilation efficiency. Here, we report the functional characterization of NRT1.8, a member of the nitrate transporter (NRT1) family in Arabidopsis thaliana. NRT1.8 is upregulated by nitrate. Histochemical analysis using promoter-β-glucuronidase fusions, as well as in situ hybridization, showed that NRT1.8 is expressed predominantly in xylem parenchyma cells within the vasculature. Transient expression of the NRT1.8:enhanced green fluorescent protein fusion in onion epidermal cells and Arabidopsis protoplasts indicated that NRT1.8 is plasma membrane localized. Electrophysiological and nitrate uptake analyses using Xenopus laevis oocytes showed that NRT1.8 mediates low-affinity nitrate uptake. Functional disruption of NRT1.8 significantly increased the nitrate concentration in xylem sap. These data together suggest that NRT1.8 functions to remove nitrate from xylem vessels. Interestingly, NRT1.8 was the only nitrate assimilatory pathway gene that was strongly upregulated by cadmium (Cd2+) stress in roots, and the nrt1.8-1 mutant showed a nitrate-dependent Cd2+-sensitive phenotype. Further analyses showed that Cd2+ stress increases the proportion of nitrate allocated to wild-type roots compared with the nrt1.8-1 mutant. These data suggest that NRT1.8-regulated nitrate distribution plays an important role in Cd2+ tolerance.
0
Paper
Citation377
0
Save
0

Chloroplast‐generated reactive oxygen species are involved in hypersensitive response‐like cell death mediated by a mitogen‐activated protein kinase cascade

Yidong Liu et al.Jul 25, 2007
Plant defense against pathogens often includes rapid programmed cell death known as the hypersensitive response (HR). Recent genetic studies have demonstrated the involvement of a specific mitogen-activated protein kinase (MAPK) cascade consisting of three tobacco MAPKs, SIPK, Ntf4 and WIPK, and their common upstream MAPK kinase (MAPKK or MEK), NtMEK2. Potential upstream MAPKK kinases (MAPKKKs or MEKKs) in this cascade include the orthologs of Arabidopsis MEKK1 and tomato MAPKKKalpha. Activation of the SIPK/Ntf4/WIPK pathway induces cell death with phenotypes identical to pathogen-induced HR at macroscopic, microscopic and physiological levels, including loss of membrane potential, electrolyte leakage and rapid dehydration. Loss of membrane potential in NtMEK2(DD) plants is associated with the generation of reactive oxygen species (ROS), which is preceded by disruption of metabolic activities in chloroplasts and mitochondria. We observed rapid shutdown of carbon fixation in chloroplasts after SIPK/Ntf4/WIPK activation, which can lead to the generation of ROS in chloroplasts under illumination. Consistent with a role of chloroplast-generated ROS in MAPK-mediated cell death, plants kept in the dark do not accumulate H(2)O(2) in chloroplasts after MAPK activation, and cell death is significantly delayed. Similar light dependency was observed in HR cell death induced by tobacco mosaic virus, which is known to activate the same MAPK pathway in an N-gene-dependent manner. These results suggest that activation of the SIPK/Ntf4/WIPK cascade by pathogens actively promotes the generation of ROS in chloroplasts, which plays an important role in the signaling for and/or execution of HR cell death in plants.
0

Opposing functions of the plant TOPLESS gene family during SNC1-mediated autoimmunity

Christopher Garner et al.Aug 6, 2020
Abstract Regulation of the plant immune system is important for controlling the specificity and amplitude of responses to pathogens and in preventing growth-inhibiting autoimmunity that leads to reductions in plant fitness. In previous work, we reported that SRFR1, a negative regulator of effector-triggered immunity, interacts with SNC1 and EDS1. When SRFR1 is non-functional in the Arabidopsis accession Col-0, SNC1 levels increase, causing a cascade of events that lead to autoimmunity phenotypes. Previous work showed that some members of the transcriptional co-repressor family TOPLESS interact with SNC1 to repress negative regulators of immunity. Therefore, to explore potential connections between SRFR1 and TOPLESS family members, we took a genetic approach that examined the effect of each TOPLESS member in the srfr1 mutant background. The data indicated that an additive genetic interaction exists between SRFR1 and two members of the TOPLESS family, TPR2 and TPR3 , as demonstrated by increased stunting and elevated PR2 expression in srfr1 tpr2 and srfr1 tpr2 tpr3 mutants. Furthermore, the tpr2 mutation intensifies autoimmunity in the auto-active snc1-1 mutant, indicating a novel role of these TOPLESS family members in negatively regulating SNC1 -dependent phenotypes. This negative regulation can also be reversed by overexpressing TPR2 in the srfr1 tpr2 background. Thus, this work uncovers diverse functions of individual members of the TOPLESS family in Arabidopsis and provides evidence for the additive effect of transcriptional and post-transcriptional regulation of SNC1 . Author Summary The immune system is a double-edged sword that affords organisms with protection against infectious diseases but can also lead to negative effects if not properly controlled. Plants only possess an innate antimicrobial immune system that relies on rapid upregulation of defenses once immune receptors detect the presence of microbes. Plant immune receptors known as resistance proteins play a key role in rapidly triggering defenses if pathogens breach other defenses. A common model of unregulated immunity in the reference Arabidopsis variety Columbia-0 involves a resistance gene called SNC1 . When the SNC1 protein accumulates to unnaturally high levels or possesses auto-activating mutations, the visible manifestations of immune overactivity include stunted growth and low biomass and seedset. Consequently, expression of this gene and accumulation of the encoded protein are tightly regulated on multiple levels. Despite careful study the mechanisms of SNC1 gene regulation are not fully understood. Here we present data on members of the well-known TOPLESS family of transcriptional repressors. While previously characterized members were shown to function in indirect activation of defenses, TPR2 and TPR3 are shown here to function in preventing high defense activity. This study therefore contributes to the understanding of complex regulatory processes in plant immunity.
0
Citation1
0
Save
2

The class I TCP transcription factor AtTCP8 is a modulator of phytohormone-responsive signaling networks

Benjamin Spears et al.Dec 23, 2021
ABSTRACT The plant-specific TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR (TCP) transcription factor family is most closely associated with regulating plant developmental programs. Recently, TCPs were also shown to mediate host immune signaling, both as targets of pathogen virulence factors and regulators of plant defense genes. However, any comprehensive characterization of TCP gene targets is still lacking. Loss of the class I TCP AtTCP8 attenuates early immune signaling, and when combined with mutations in AtTCP14 and AtTCP15 , additional layers of defense signaling in Arabidopsis thaliana . Here we focus on TCP8, the most poorly characterized of the three to date. We use chIP and RNA-sequencing to identify TCP8-bound gene promoters and differentially regulated genes in the tcp8 mutant, data sets that are heavily enriched in signaling components for multiple phytohormone pathways, including brassinosteroids (BRs), auxin, and jasmonic acid (JA). Using BR signaling as a representative example, we show that TCP8 directly binds and activates the promoters of the key BR transcriptional regulators BZR1 and BZR2/BES1 . Furthermore, tcp8 mutant seedlings exhibit altered BR-responsive growth patterns and complementary reductions in BZR2 transcript levels, while the expressed protein demonstrates BR-responsive changes in subnuclear localization and transcriptional activity. We conclude that one explanation for the significant targeting of TCP8 alongside other TCP family members by pathogen effectors may lie in its role as a modulator of brassinosteroid and other plant hormone signaling pathways. One Sentence Summary One member of a pathogen-targeted transcription factor family modulates phytohormone response networks and displays brassinosteroid-dependent cellular location and activity.
2
Citation1
0
Save
Load More