Abstract Early events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. Following landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible (SI) species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen. Here, based on the generation of SI-Arabidopsis lines and by setting up a live imaging system, we showed that control of pollen hydration has a central role in pollen selectivity. The faster pollen pumps water from the papilla during an initial period of 10 minutes, the faster it germinates. Furthermore, we found that the SI barriers act to block the proper hydration of incompatible pollen and when hydration is promoted by high humidity, an additional control prevents pollen tube penetration into the stigmatic wall. In papilla cells, actin bundles focalize at the contact site with the compatible pollen but not with the incompatible one, raising the possibility that stigmatic cells react to the mechanical pressure applied by the invading growing tube. Highlight A live imaging system coupled with self-incompatible Arabidopsis lines highlight the role of stigmatic cells in controlling pollen hydration and in reacting to pollen tube intrusion by remodeling actin cytoskeleton.