AC
Anita Corbett
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(70% Open Access)
Cited by:
1,385
h-index:
61
/
i10-index:
139
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray et al.Jul 1, 2013
RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes. This study reports a global analysis of binding sites for over 200 RNA-binding proteins (RBPs) from 24 species; conserved RNA-binding motifs are identified, and their analysis allows prediction of interaction sites based on the sequence of the RNA-binding domain alone. The sequence and context of RNA that dictate the interaction of RNA-binding proteins with their targets have tended to be studied on a protein-by-protein basis. A study by Timothy Hughes and colleagues now reports a global analysis of binding sites for more than 200 RNA-binding proteins from 24 eukaryote species. Conserved RNA-binding motifs are identified, and their analysis allows for the prediction of interaction sites on the basis of the RNA-binding domain sequence alone. The motifs also are found to reflect each molecule's function, which will aid in understanding the roles of previously uncharacterized examples.
0
Citation1,368
0
Save
2

The Polyadenosine RNA Binding Protein ZC3H14 is Required in Mice for Proper Dendritic Spine Density

Shane Jones et al.Oct 9, 2020
Abstract ZC3H14 ( Z inc finger Cy s Cy s Cy s H is domain-containing protein 14 ), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14 Δ ex13/ Δ ex13 , provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14 Δ ex13/ Δ ex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ . This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14 Δ ex13/ Δ ex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.
2
Citation5
0
Save
7

The Disease-Associated ProteinsDrosophilaNab2 and Ataxin-2 Interact with Shared RNAs and Coregulate Neuronal Morphology

J. Rounds et al.Mar 2, 2021
ABSTRACT Nab2 encodes a conserved polyadenosine RNA-binding protein (RBP) with broad roles in post-transcriptional regulation, including in poly(A) RNA export, poly(A) tail length control, transcription termination, and mRNA splicing. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability, but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships likely remain unidentified. Here we present evidence that Drosophila melanogaster Nab2 interacts with the RBP Ataxin-2 (Atx2), a neuronal translational regulator, and implicate these proteins in coordinate regulation of neuronal morphology and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using an RNA immunoprecipitation-sequencing (RIP-Seq) approach. Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo , associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g. drk , me31B , stai ) and of transcripts specific to Nab2 or Atx2 (e.g. Arpc2 , tea , respectively) promise insight into neuronal functions of and interactions between each RBP. Significantly, Nab2-associated RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. Taken together, these data demonstrate that Nab2 opposingly regulates neuronal morphology and shares associated neuronal RNAs with Atx2, and that Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
7
Citation4
0
Save
1

The RNA helicase DDX1 associates with the nuclear RNA exosome and modulates R-loops

Julia Amorim et al.Apr 17, 2023
Abstract The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A) followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks, and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing (DRIP-Seq). We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
1
Citation2
0
Save
3

The RNA binding protein Nab2 regulates the proteome of the developingDrosophilabrain

Edwin Corgiat et al.Dec 11, 2020
Abstract The human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA binding protein, is mutated in an inherited form of autosomal recessive, non-syndromic intellectual disability. To gain insight into ZC3H14 neurological functions, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model reveal that Nab2 controls final patterns of neuron projection within fully developed adult brains. Here, we examine earlier pupal stages and define roles for Nab2 in controlling the dynamic growth of axons into the developing brain mushroom bodies (MBs), which support olfactory learning and memory, and in regulating abundance of a small fraction of the total brain proteome, a portion of which is rescued by overexpression of Nab2 specifically in brain neurons. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule binding protein Futsch, the neuronal Ig-family transmembrane protein Turtle, the glial:neuron adhesion protein Contactin, the RacGAP Tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to a the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body, and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA binding proteins in neurodevelopment and function.
3
Citation1
1
Save
1

Dynamicin vivomapping of the methylproteome using a chemoenzymatic approach

Jonathan Farhi et al.Jul 22, 2022
Dynamic protein post-translation methylation is essential for cellular function, highlighted by the essential role of methylation in transcriptional regulation and its aberrant dysregulation in diseases including cancer. This underscores the importance of cataloging the cellular methylproteome. However, comprehensive analysis of the methylproteome remains elusive due to limitations in current enrichment and analysis pipelines. Here, we employ an L-Methionine analogue, ProSeMet, that is chemoenzymatically converted to the SAM analogue ProSeAM in cells and in vivo to tag proteins with a biorthogonal alkyne that can be directly detected via LC-MS/MS, or functionalized for subsequent selective enrichment and LC-MS/MS identification. Without enrichment, we identify lysine mono-, di-, and trimethylation, histidine methylation, and arginine methylation with site specific resolution on proteins including heat shock protein HSPA8, for which methylation is implicated in human disease. With enrichment, we identify 486 proteins known to be methylated and 221 proteins with novel methylation sites encompassing diverse cellular functions. Systemic ProSeMet delivery in mice pseudomethylates proteins across organ systems with blood-brain barrier penetrance and identifies site-specific pseudomethylation in vivo with LC-MS/MS. Leveraging these pipelines to define the cellular methylproteome may have broad applications for understanding the methylproteome in the context of disease.
1
Citation1
0
Save
0

Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness

Anne Slavotinek et al.Apr 2, 2020
The RNA exosome is an essential ribonuclease complex involved in the processing and degradation of both coding and noncoding RNAs. We present three patients with biallelic variants in EXOSC5 , which encodes a structural subunit of the RNA exosome. The common clinical features of these patients comprise failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His, and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess the functional consequences of pathogenic variants in EXOSC5 . Loss of function for the zebrafish ortholog results in shortened and curved tails and bodies, reduced eye and head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants show defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. Overall, these findings expand the number of genes encoding RNA exosome components that have been implicated in human disease, while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
2

A Budding Yeast Model for Human Disease Mutations in the EXOSC2 Cap Subunit of the RNA Exosome

Maria Sterrett et al.Dec 11, 2020
RNA exosomopathies, a growing family of tissue-specific diseases, are linked to missense mutations in genes encoding the structural subunits of the conserved 10-subunit exoribonuclease complex, the RNA exosome. Such mutations in the cap subunit gene cause the novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa and distinctive acies). In contrast, exosomopathy mutations in the cap subunit gene cause pontocerebellar hypoplasia type 1b (PCH1b). Though having strikingly different disease pathologies, and exosomopathy mutations result in amino acid substitutions in similar, conserved domains of the cap subunits, suggesting that these exosomopathy mutations have distinct consequences for RNA exosome function. We generated the first model of the SHRF pathogenic amino acid substitutions using budding yeast by introducing the mutations in the orthologous gene . The resulting mutant cells have defects in cell growth and RNA exosome function. We detect significant transcriptomic changes in both coding and non-coding RNAs in the variant, , which models p.Gly198Asp. Comparing this mutant to the previously studied model of PCH1b mutation, , reveals that these mutants have disparate effects on certain RNA targets, providing the first evidence for different mechanistic consequences of these exosomopathy mutations. Congruently, we detect specific negative genetic interactions between RNA exosome cofactor mutants and but not . These data provide insight into how SHRF mutations could alter the function of the RNA exosome and allow the first direct comparison of exosomopathy mutations that cause distinct pathologies.
0

A Genetic Screen Links the Disease-Associated Nab2 RNA-Binding Protein to the Planar Cell Polarity Pathway in Drosophila melanogaster

Wei-Hsuan Lee et al.Dec 23, 2019
Mutations in the gene encoding the ubiquitously expressed RNA-binding protein ZC3H14 result in a non-syndromic form of autosomal recessive intellectual disability. Studies in Drosophila have defined roles for the ZC3H14 ortholog, Nab2 (aka Drosophila Nab2 or dNab2), in axon guidance and memory due in part to interaction with a second RNA-binding protein, the fly Fragile X homolog Fmr1, and coregulation of shared Nab2-Fmr1 target mRNAs. Despite these advances, neurodevelopmental pathways regulated by Nab2 remain poorly defined. Structural defects in Nab2 null brains resemble defects observed upon disruption of the planar cell polarity (PCP) pathway, which regulates planar orientation of static and motile cells. A kinked bristle phenotype in surviving Nab2 mutant adults additionally suggests a defect in F-actin polymerization and bundling, which is also a PCP-regulated processes. To test for Nab2-PCP genetic interactions, a collection of PCP loss-of-function alleles was screened for modification of a rough-eye phenotype produced by Nab2 overexpression in the eye ( GMR-Nab2 ) and subsequently for modification of Nab2 null phenotypes. Multiple PCP alleles dominantly modify GMR-Nab2 eye roughening and a subset of these alleles also rescue low survival and thoracic bristle kinking in Nab2 zygotic nulls. Moreover, alleles of two X-linked PCP factors, dishevelled ( dsh ) and β amyloid protein precursor-like ( Appl ), rescue GMR-Nab2 eye roughening in male progeny derived from hemizygous dsh or Appl mutant fathers, suggesting an additional effect inherited through the male germline. These findings demonstrate a consistent pattern of Nab2-PCP genetic interactions that suggest molecular links between Nab2 and the PCP pathway in the developing eye, wing and germline.
Load More