YR
Yamini Ravichandran
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Topology changes of the regenerating Hydra define actin nematic defects as mechanical organizers of morphogenesis.

Yamini Ravichandran et al.Apr 8, 2024
Hydra is named after the mythological animal for its regenerative capabilities, but contrary to its mythological counterpart, it only regenerates one head when cut. Here we show that soft compression of head regenerating tissues induces the regeneration of viable, two headed animals. Topological defects in the supracellular nematic organization of actin were previously correlated with the new head regeneration site. Soft compression creates new topological defects associated with additional heads. To test the necessity of topological defects in head regeneration, we changed the topology of the tissue. By compressing the head regenerating tissues along their body axis, topological defects of the foot and of the regenerating head fused together, forming a toroid with no defects. Perfectly ordered toroids did not regenerate over eight days and eventually disintegrated. Spheroids made from excised body column tissue partially lose their actin order during regeneration. Compression of spheroids generated toroids with actin defects. These tissues regenerated into toroidal animals with functional head and foot, and a bifurcated body. Our results show that topological defects in the actin order are necessary to shape the head of the regenerating Hydra, supporting the notion that actin topological defects are mechanical organizers of morphogenesis.
0

A toxic palmitoylation on Cdc42 drives a severe autoinflammatory syndrome

Bahia Bekhouche et al.Oct 17, 2019
Background: Autoinflammatory diseases (AID) result from dysregulation of the first lines of innate immune responses. Recently, development of high throughput genome sequencing technology led to the rapid emergence of important knowledge in the genetic field. About 20 genes have been identified so far in monogenic forms of distinct AID. However, 70-90 % of patients with AID remain without genetic diagnosis. Objective: We report the identification and characterization of a mutation in the C-terminal region of the Rho GTPase Cdc42 in a patient presenting a severe autoinflammatory phenotype. Methods: We have analyzed the consequences of the mutation on the subcellular localization of the Cdc42 protein using imaging techniques. Molecular studies were performed using proteomic and biochemical experiments to provide mechanistic bases of the observed defects. Functional assays were also conducted using flow cytometry and cytokine production measurements. Results: We show that mutant Cdc42 is trapped in the Golgi apparatus due to the aberrant addition of a palmitate that both enhances the interaction of mutant Cdc42 with Golgi membranes and inhibit its extraction by GDP dissociation inhibitor (GDI), thus impairing its cytosol/membrane shuttling. At the functional level, mutant Cdc42 fails to sustain actin filaments polymerization and induces an exacerbated profile of pro-inflammatory cytokine production due to increased NF-kB activation. Conclusions: Our study now provides a molecular explanation for mutations that have been identified recently in our AID patient and others in the C-terminal part of Cdc42. Mutations located in this region of Cdc42 impair the intracellular localization of Cdc42, preventing its interaction with the plasma membrane. Thus, our results definitively link mutations in the CDC42 gene to a complex immune-hemato-autoinflammatory phenotype in humans.
2

The functional specificity of CDC42 isoforms is caused by their distinct subcellular localization

Yamini Ravichandran et al.Feb 27, 2023
Abstract The small G-protein CDC42 is an evolutionary conserved polarity protein and a key regulator of numerous polarized cell functions, including directed cell migration. In vertebrates, alternative splicing gives rise to two CDC42 proteins: the ubiquitously expressed isoform (CDC42u) and the brain isoform (CDC42b), whose specific roles are not fully elucidated. The two isoforms only differ in their carboxy-terminal sequence, which includes the CAAX motif essential for CDC42 interaction with membrane. Here we show that these divergent sequences do not directly affect the range of CDC42’s potential binding partners, but indirectly influence CDC42-driven signaling by controlling the specific subcellular localization of the two isoforms. In astrocytes and neural precursors, which naturally express both variants, CDC42u is mainly cytosolic and associates with the leading-edge plasma membrane of migrating cells where it recruits the Par6-PKCζ complex to fulfill its polarity function. In contrast, CDC42b mainly localizes to intracellular membrane compartments, where it interacts with N-WASP. CDC42b does not participate in cell polarization but embodies the major isoform regulating endocytosis. Both CDC42 isoforms act in concert by contributing their specific functions to promote chemotaxis of neural precursors, demonstrating that the expression pattern of the two isoforms is decisive for the tissue-specific behavior of cells.