MT
Manuel Trauner
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
1
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeted DamID detects cell-type specific histone modifications in vivo

Jelle Ameele et al.Apr 11, 2024
+8
E
M
J
Abstract Histone modifications play a key role in regulating gene expression and cell fate during development and disease. Current methods for cell-type specific genome-wide profiling of histone modifications require dissociation and isolation of cells and are not compatible with all tissue types. Here we adapt Targeted DamID to recognise specific histone marks, by fusing chromatin binding proteins or single-chain antibodies to Dam, an E. coli DNA adenine methylase. When combined with Targeted DamID (TaDa), this enables cell-type specific chromatin profiling in intact tissues or organisms. We first profiled H3K4me3, H3K9ac, H3K27me3 and H4K20me1 in vivo in neural stem cells of the developing Drosophila brain. Next, we mapped cell-type specific H3K4me3 distribution in neural stem cells of the developing mouse brain. Finally, we injected RNA encoding DamID constructs into 1-cell stage Xenopus embryos to profile H3K4me3 distribution during gastrulation and neurulation. These results illustrate the versatility of Targeted DamID to profile cell-type specific histone marks throughout the genome in diverse model systems. Summary statement Targeted DamID enables genome-wide cell-type specific detection of histone modifications in vivo in Drosophila , mouse and Xenopus .
0
Citation1
0
Save
2

Single molecule MATAC-seq reveals key determinants of DNA replication origin efficiency

Anna Chanou et al.Mar 14, 2023
+13
K
M
A
Summary: Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed M ethylation A ccessibility of TA rgeted C hromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of specific genomic loci after targeted purification in their native chromatin context. Applying MATAC-Seq to selected early-efficient (EE) and late-inefficient (LI) budding yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an optimal 100-115bp nucleosome-free region in combination with surrounding well-positioned nucleosomes and open +2 linker region is a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during DNA replication of eukaryotic cells. Consequently, our single-molecule assay for chromatin accessibility will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo .