RY
Rebecca Yakob
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
3
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Novel CHD8 genomic targets identified in fetal mouse brain by in vivo Targeted DamID

A. Wade et al.Jan 13, 2021
ABSTRACT Genetic studies of autism spectrum disorder (ASD) have revealed a causal role for mutations in chromatin remodeling genes. Chromodomain helicase DNA binding protein 8 ( CHD8 ) encodes a chromatin remodeler with one of the highest de novo mutation rates in sporadic ASD. However, the relationship between CHD8 genomic function and autism-relevant biology remains poorly elucidated. CHD8 binding studies have relied on Ch romatin Immuno p recipitation followed by sequencing (ChIP-seq), however, these datasets exhibit significant variability. ChIP-seq has technical limitations in the context of weak or indirect protein-DNA interactions or when high-performance antibodies are unavailable. Thus, complementary approaches are needed overall, and, specifically, to establish CHD8 genomic targets and regulatory function. Here we used Targeted DamID in utero to characterize CHD8 binding in developing embryonic mouse cortex. CHD8 Targeted DamID followed by sequencing (CHD8 TaDa-seq) revealed binding at previously identified targets as well as loci sensitive to Chd8 haploinsufficiency. CHD8 TaDa-seq highlighted CHD8 binding distal to a subset of genes specific to neurodevelopment and neuronal function. These studies establish TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provide insights into the relationship between chromatin remodeling by CHD8 and autism-relevant pathophysiology associated with CHD8 mutations.
4
Citation2
0
Save
0

Targeted DamID detects cell-type specific histone modifications in vivo

Jelle Ameele et al.Apr 11, 2024
Abstract Histone modifications play a key role in regulating gene expression and cell fate during development and disease. Current methods for cell-type specific genome-wide profiling of histone modifications require dissociation and isolation of cells and are not compatible with all tissue types. Here we adapt Targeted DamID to recognise specific histone marks, by fusing chromatin binding proteins or single-chain antibodies to Dam, an E. coli DNA adenine methylase. When combined with Targeted DamID (TaDa), this enables cell-type specific chromatin profiling in intact tissues or organisms. We first profiled H3K4me3, H3K9ac, H3K27me3 and H4K20me1 in vivo in neural stem cells of the developing Drosophila brain. Next, we mapped cell-type specific H3K4me3 distribution in neural stem cells of the developing mouse brain. Finally, we injected RNA encoding DamID constructs into 1-cell stage Xenopus embryos to profile H3K4me3 distribution during gastrulation and neurulation. These results illustrate the versatility of Targeted DamID to profile cell-type specific histone marks throughout the genome in diverse model systems. Summary statement Targeted DamID enables genome-wide cell-type specific detection of histone modifications in vivo in Drosophila , mouse and Xenopus .
0
Citation1
0
Save