OS
O Sullivan
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Repeated LPS induces training and tolerance of microglial responses across brain regions

Jennifer Kim et al.Apr 12, 2024
Abstract Background Neuroinflammation is involved in the pathogenesis of almost every central nervous system disorder. As the brain’s innate immune cells, microglia fine tune their activity to a dynamic brain environment. Previous studies have shown that repeated bouts of peripheral inflammation can trigger long-term changes in microglial gene expression and function, a form of innate immune memory. Methods and Results In this study, we used multiple low-dose lipopolysaccharide (LPS) injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological changes that contribute to the formation of immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects of these changes on behavior. Training and tolerance of gene expression was shared across regions, and we identified 3 unique clusters of DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) with different biological functions. 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family transcription factors, two key regulators of innate immune memory. We quantified shifts in microglia morphological populations and found that while the proportion of ramified and rod-like microglia mostly remained consistent within brain regions and sexes with LPS treatment, there was a shift from ameboid towards hypertrophic morphological states across immune memory states and a dynamic emergence and resolution of trains of rod-like microglia with repeated LPS. Conclusions Together, findings support the dynamic regulation of microglia during the formation of immune memories in the brain and support future work to exploit this model in brain disease contexts.
0

Early life intestinal inflammation alters gut microbiome, impairing gut-brain communication and reproductive behavior in mice

O Sullivan et al.May 26, 2024
Abstract Despite recent advances in understanding the connection between the gut microbiota and the brain, there remains a wide knowledge gap in how gut inflammation impacts brain development. Microbiota-derived metabolite signaling from the gut to the brain is required for normal development of microglia, the brain’s resident immune cells. Disruption of the microbiota-brain communication has been linked to impaired behaviours and Autism Spectrum Disorder. We hypothesized that intestinal inflammation in early life would negatively affect neurodevelopment through dysregulation of microbiota communication to brain microglia. To test this hypothesis, we developed a novel pediatric model of Inflammatory Bowel Disease (IBD). IBD is an incurable condition affecting millions of people worldwide, characterized by chronic intestinal inflammation, and has comorbid symptoms of anxiety, depression and cognitive impairment. Significantly, 25% of IBD patients are diagnosed during childhood, and the effect of chronic inflammation during this critical period of development is largely unknown. We developed a chemical model of pediatric chronic IBD by repeatedly treating juvenile mice with dextran sodium sulfate (DSS) in drinking water. DSS-treated mice displayed increased intestinal inflammation, altered microbiota and changes in circulating metabolites. We also found that alterations in gut microbiota had long-term impacts on female microglia and male sex-specific behaviours and testosterone regulation, consistent with delayed puberty observed in male IBD patients. Our research expands our understanding of microbiota-microglia communication underlying development. The gut-brain axis is an exciting target for personalized medicine as microbiome manipulations could be feasible for early intervention to reverse deficits due to juvenile inflammation. Highlights Early life gut inflammation produces sex-specific i) microbiome, ii) sex hormone and iii) behavioural impacts Both sexes show disrupted gut bacterial members that regulate sex hormone levels Male mice demonstrate deficits in mate seeking, which may be mediated by reduced seminal vesicle mass and reduced androgen levels Female mice lack behavioural deficits, but demonstrate increased amoeboid microglia in the hippocampus