LS
Laurie Smith
Author with expertise in Formation and Function of Plant Cuticles
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
1,319
h-index:
48
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions

Andrey Balakin et al.Sep 1, 1996
M
L
A
We have discovered that all known yeast and vertebrate small nucleolar RNAs (snoRNAs), except for the MRP/7–2 RNA, fall into two major classes. One class is defined by conserved boxes C and D and the other by a novel element: a consensus ACA triplet positioned 3 nt before the 3′ end of the RNA. A role for the ACA box in snoRNA stability has been established by mutational analysis of a yeast ACA snoRNA (snR11). Full function of the box depends on the integrity of an adjacent upstream stem. All members of the yeast ACA family are associated with the GAR1 protein. Binding of this or another common small nucleolar ribonucleoprotein particle protein is predicted to be a critical entry point to snoRNA posttranscriptional life, including precise formation of the snoRNA 3′ end.
0
Citation453
0
Save
0

A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates

Laurie Smith et al.Sep 1, 1992
S
B
B
L
ABSTRACT Dominant mutations of the Knotted-1 (Kn1) homeobox gene of maize alter the differentiation and growth of cells associated with leaf veins. By analyzing Kn1 transcripts and KN1 protein, we show that the gene is not expressed at high levels during the development of wildtype leaves. Instead, Kn1 is expressed in apical meristems of vegetative and floral shoots, and is downregulated as leaves and floral organs are initiated. Kn1 is also expressed in relatively undifferentiated cells within developing vascular bundles, as well as ground tissue, in immature, unelongated axes of wild-type vegetative and floral shoots. In Kn1-N2 mutant plants, quantitative, but not qualitative differences are apparent in Kn1 transcripts and KN1 protein, consistent with previous observations that dominant Kn1 mutations map to noncoding regions of the gene. Kn1 is expressed ectopically in vascular bundles within developing mutant leaves in a pattern that correlates with the phenotypic alterations produced by the Kn1-N2 mutation. Thus, Kn1 apparently alters the fates of leaf cells in which it is ectopically expressed from an early stage of leaf development. Based on these observations, we hypothesize that Kn1 functions in its wild-type context as a regulator of cell determination.
0
Citation442
0
Save
0

Integration of omic networks in a developmental atlas of maize

Justin Walley et al.Aug 18, 2016
+8
R
Z
J
Patterns of development regulation within tissues Expression of a given gene at the RNA level does not always correlate with expression at the protein level for many organisms. Walley et al. have built an integrated atlas of gene expression and regulatory networks in developing maize, using the same tissue samples to measure the transcriptome, proteome, and phosphoproteome. Coexpression networks from the transcriptome and proteome showed little overlap with each other, even though they showed enrichment of similar pathways. Integration of mRNA, protein, and phosphoprotein data sets improved the predictive power of the gene regulatory networks. Science , this issue p. 814
0
Citation423
0
Save
13

Integration of GWAS and TWAS to elucidate the genetic architecture of natural variation for leaf cuticular conductance in maize

Meng Lin et al.Oct 28, 2021
+10
S
L
M
Abstract The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize leaf cuticular conductance ( g c ) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association study (GWAS/TWAS) to identify candidate genes putatively regulating variation in leaf g c . Of the 22 plausible candidate genes identified, five were predicted to be involved in cuticle precursor biosynthesis and export, two in cell wall modification, nine in intracellular membrane trafficking, and seven in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for g c , confirming the association between g c and ISTL1 in a haplotype-based association analysis. The findings of this study provide novel insights into the role of regulatory variants in the development of the maize leaf cuticle, and will ultimately assist breeders to develop drought-tolerant maize for target environments. Sentence summary We performed an integrated GWAS/TWAS and identified 22 candidate genes putatively regulating variation in maize leaf g c . The association between g c and the strongest candidate causal gene, ISTL1 , was validated with maize nested near-isogenic lines.
13
Citation1
0
Save
0

Integrative multi-omic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves

Lin Meng et al.Apr 12, 2024
+10
H
M
L
SUMMARY Studying the genetic basis of leaf wax composition and its correlation with leaf cuticular conductance ( g c ) is crucial for improving crop water-use efficiency. The leaf cuticle, which comprises a cutin matrix and various waxes, functions as an extracellular hydrophobic layer, protecting against water loss upon stomatal closure. To address the limited understanding of genes associated with the natural variation of leaf cuticular waxes and their connection to g c , we conducted statistical genetic analyses using leaf transcriptomic, metabolomic, and physiological data sets collected from a maize ( Zea mays L.) panel of ∼300 inbred lines. Through a random forest analysis with 60 cuticular wax traits, it was shown that high molecular weight wax esters play an important role in predicting g c . Integrating results from genome-wide and transcriptome-wide studies (GWAS and TWAS) via a Fisher’s combined test revealed 231 candidate genes detected by all three association tests. Among these, 11 genes exhibit known or predicted roles in cuticle-related processes. Throughout the genome, multiple hotspots consisting of GWAS signals for several traits from one or more wax classes were discovered, identifying four additional plausible candidate genes and providing insights into the genetic basis of correlated wax traits. Establishing a partially shared genetic architecture, we identified 35 genes for both g c and at least one wax trait, with four considered plausible candidates. Our study uncovered the genetic control of maize leaf waxes, establishing a link between wax composition and g c , with implications for potentially breeding more water-use efficient maize. SIGNIFICANCE STATEMENT We exploited natural variation in the abundance of maize leaf cuticular waxes to identify genetic determinants of wax composition and its relationship to cuticle function as a barrier against water loss. We identified a set of strongly supported candidate genes with plausible functions in cuticular wax biosynthesis or deposition and added to the evidence for wax esters as the most important wax for water barrier function, offering new tools for modification of cuticle-dependent traits.
0

Changes in lipid composition and ultrastructure associated with functional maturation of the cuticle during adult maize leaf development

Richard Bourgault et al.May 2, 2019
+7
M
S
R
Although extensive prior work has characterized cuticle composition, function, ultrastructure and development in many plant species, much remains to be learned about how these features are interrelated. Moreover, very little is known about the adult maize leaf cuticle in spite of its significance for agronomically important traits in this major crop. We analyzed cuticle composition, ultrastructure, and permeability along the developmental gradient of partially expanded adult maize leaves to probe the relationships between these features. The water barrier property is acquired at the cessation of cell expansion. Wax types and chain lengths accumulate asynchronously along the developmental gradient, while overall wax load does not vary. Cutin begins to accumulate prior to establishment of the water barrier and continues thereafter. Ultrastructurally, pavement cell cuticles consist of an epicuticular layer, a thin cuticle proper that acquires an inner, osmiophilic layer during development, and no cuticular layer. Cuticular waxes of the adult maize leaf are dominated by alkanes and wax esters localized mainly in the epicuticular layer. Establishment of the water barrier coincides with a switch from alkanes to esters as the major wax type, and the emergence of an osmiophilic (likely cutin-rich) layer of the cuticle proper.
0

Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development

Meng Lin et al.Nov 9, 2019
+11
S
L
M
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
0

Structure-function analysis of the maize bulliform cell cuticle and its role in dehydration and leaf rolling

Susanne Matschi et al.Feb 7, 2020
+6
R
M
S
The cuticle is a hydrophobic layer on the outer surface plant shoots, which serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Analysis of natural variation was used to relate bulliform strip pattering to leaf rolling rate, providing evidence of a role for bulliform cells in leaf rolling. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants vs. wild type siblings, provided evidence that bulliform cells lose water across the cuticle more rapidly than other epidermal cell types. Bulliform cell cuticles have a distinct ultrastructure, and differences in cutin monomer content and composition, compared to other leaf epidermal cells. We hypothesize that this cell type-specific cuticle is more water permeable than the epidermal pavement cell cuticle, facilitating the function of bulliform cells in stress-induced leaf rolling observed in grasses.
0

Network analyses implicate a role for PHYTOCHROME-mediated light signaling in the regulation of cuticle development in plant leaves

Pengfei Qiao et al.Oct 21, 2019
+4
M
R
P
Plant cuticles are composed of wax and cutin, and evolved in the land plants as a hydrophobic boundary that reduces water loss from the plant epidermis. The expanding maize adult leaf displays a dynamic, proximodistal gradient of cuticle development, from the leaf base to the tip. Laser microdissection RNA Sequencing (LM-RNAseq) was performed along this proximodistal gradient, and complementary network analyses identified potential regulators of cuticle biosynthesis and deposition. Correlations between cuticle development and cell wall biosynthesis processes were identified, as well as evidence of roles for auxin and brassinosteroids. In addition, our network analyses suggested a previously undescribed function for PHYTOCHROME-mediated light signaling during cuticular wax deposition. Genetic analyses reveal that the phyB1 phyB2 double mutant of maize exhibits abnormal cuticle composition, supporting predictions of our coexpression analyses. Reverse genetic analyses also show that phy mutants of the moss Physcomitrella patens exhibit abnormal cuticle composition, suggestion a role for light-stimulated development of cuticular waxes during plant evolution.