SG
Steven Gill
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(70% Open Access)
Cited by:
32,147
h-index:
64
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae

John Heidelberg et al.Aug 1, 2000
Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
0
Citation1,826
0
Save
0

Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH

Lixin Zhu et al.Oct 11, 2012
Nonalcoholic steatohepatitis (NASH) is a serious liver disease associated with obesity. Characterized by metabolic syndrome, hepatic steatosis, and liver inflammation, NASH is believed to be under the influence of the gut microflora. Here, the composition of gut bacterial communities of NASH, obese, and healthy children was determined by 16S ribosomal RNA pyrosequencing. In addition, peripheral blood ethanol was analyzed to monitor endogenous ethanol production of patients and healthy controls. UniFrac-based principle coordinates analysis indicated that most of the microbiome samples clustered by disease status. Each group was associated with a unique pattern of enterotypes. Differences were abundant at phylum, family, and genus levels between healthy subjects and obese patients (with or without NASH), and relatively fewer differences were observed between obese and the NASH microbiomes. Among those taxa with greater than 1% representation in any of the disease groups, Proteobacteria, Enterobacteriaceae, and Escherichia were the only phylum, family and genus types exhibiting significant difference between obese and NASH microbiomes. Similar blood-ethanol concentrations were observed between healthy subjects and obese non-NASH patients, but NASH patients exhibited significantly elevated blood ethanol levels.The increased abundance of alcohol-producing bacteria in NASH microbiomes, elevated blood-ethanol concentration in NASH patients, and the well-established role of alcohol metabolism in oxidative stress and, consequently, liver inflammation suggest a role for alcohol-producing microbiota in the pathogenesis of NASH. We postulate that the distinct composition of the gut microbiome among NASH, obese, and healthy controls could offer a target for intervention or a marker for disease.
0

Molecular analysis of the bacterial microbiota in the human stomach

Elisabeth Bik et al.Jan 4, 2006
The microbiota of the human stomach and the influence of Helicobacter pylori colonization on its composition remain largely unknown. We characterized bacterial diversity within the human gastric mucosa by using a small subunit 16S rDNA clone library approach and analyzed 1,833 sequences generated by broad-range bacterial PCR from 23 gastric endoscopic biopsy samples. A diverse community of 128 phylotypes was identified, featuring diversity at this site greater than previously described. The majority of sequences were assigned to the Proteobacteria , Firmicutes , Actinobacteria , Bacteroidetes , and Fusobacteria phyla. Ten percent of the phylotypes were previously uncharacterized, including a Deinococcus -related organism, relatives of which have been found in extreme environments but not reported before in humans. The gastric clone libraries from 19 subjects contained H. pylori rDNA; however, only 12 of these subjects tested positive for H. pylori by conventional laboratory methods. Statistical analysis revealed a large degree of intersubject variability of the gastric ecosystem. The presence of H. pylori did not affect the composition of the gastric community. This gastric bacterial rDNA data set was significantly different from sequence collections of the human mouth and esophagus described in other studies, indicating that the human stomach may be home to a distinct microbial eco-system. The gastric microbiota may play important, as-yet-undiscovered roles in human health and disease.
0
Citation1,024
0
Save
0

Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain

Steven Gill et al.Mar 17, 2005
ABSTRACT Staphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the ∼2.8-Mb genome of S. aureus COL, an early methicillin-resistant isolate, and the ∼2.6-Mb genome of S. epidermidis RP62a, a methicillin-resistant biofilm isolate. Comparative analysis of these and other staphylococcal genomes was used to explore the evolution of virulence and resistance between these two species. The S. aureus and S. epidermidis genomes are syntenic throughout their lengths and share a core set of 1,681 open reading frames. Genome islands in nonsyntenic regions are the primary source of variations in pathogenicity and resistance. Gene transfer between staphylococci and low-GC-content gram-positive bacteria appears to have shaped their virulence and resistance profiles. Integrated plasmids in S. epidermidis carry genes encoding resistance to cadmium and species-specific LPXTG surface proteins. A novel genome island encodes multiple phenol-soluble modulins, a potential S. epidermidis virulence factor. S. epidermidis contains the cap operon, encoding the polyglutamate capsule, a major virulence factor in Bacillus anthracis . Additional phenotypic differences are likely the result of single nucleotide polymorphisms, which are most numerous in cell envelope proteins. Overall differences in pathogenicity can be attributed to genome islands in S. aureus which encode enterotoxins, exotoxins, leukocidins, and leukotoxins not found in S. epidermidis .
0
Citation995
0
Save
Load More