JH
James Hose
Author with expertise in Genetic Architecture of Quantitative Traits
University of Wisconsin–Madison
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
1
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories

DeElegant Robinson et al.Oct 24, 2023
+2
J
M
D
Abstract Copy number variation (CNV) through gene or chromosome amplification provides a route for rapid phenotypic variation and supports long-term evolution of gene functions. Although the evolutionary importance of CNV is known, little is understood about how genetic background influences CNV tolerance. Here, we measured fitness costs of over 4,000 over-expressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.
10
Paper
Citation1
0
Save
0

The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast

H Dutcher et al.May 28, 2024
+2
H
J
H
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
0

Single-cell RNA-seq reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress

Audrey Gasch et al.May 6, 2020
+10
J
F
A
From bacteria to humans, individual cells within isogenic populations can show significant variation in stress tolerance, but the nature of this heterogeneity is not clear. To investigate this, we used single-cell RNA sequencing to quantify transcript heterogeneity in single S. cerevisiae cells treated with and without salt stress, to explore population variation and identify cellular covariates that influence the stress-responsive transcriptome. Leveraging the extensive knowledge of yeast transcriptional regulation, we uncovered significant regulatory variation in individual yeast cells, both before and after stress. We also discovered that a subset of cells decouple expression of ribosomal protein genes from the environmental stress response, in a manner partly correlated with the cell cycle but unrelated to the yeast ultradian metabolic cycle. Live-cell imaging of cells expressing pairs of fluorescent regulators, including the transcription factor Msn2 with Dot6, Sfp1, or MAP kinase Hog1, revealed both coordinated and decoupled nucleo-cytoplasmic shuttling. Together with transcriptomic analysis, our results reveal that cells maintain a cellular filter against decoupled bursts of transcription-factor activation but mount a stress response upon coordinated regulation, even in a subset of unstressed cells.
9

Some organisms have genes that are more tolerant of chromosomal abnormalities than others

Eduardo Costa et al.Dec 13, 2020
A
D
J
E
Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual's genetic makeup influences its tolerance of karyotypic imbalance. Here we took a population genetics perspective to investigate the selective forces influencing aneuploidy prevalence in populations as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The phylogenetic context of lineages showing high aneuploidy rates suggests that increased aneuploidy frequency arose multiple times in evolution. Separate from aneuploidy frequency, analyzing growth phenotypes reveals that some backgrounds – such as European Wine strains – show fitness costs upon chromosome duplication, whereas other clades with high aneuploidy rates show little evidence of major deleterious effects. Our analysis confirms that chromosome amplification can produce phenotypic benefits that can influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.
1

Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast

DeElegant Robinson et al.Oct 24, 2023
+3
R
E
D
ABSTRACT Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed – remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
0

Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance.

Maria Sardi et al.May 7, 2020
+4
M
V
M
Cellulosic plant biomass is a promising sustainable resource for generating alternative biofuels and biochemicals with microbial factories. But a remaining bottleneck is engineering microbes that are tolerant of toxins generated during biomass processing, because mechanisms of toxin defense are only beginning to emerge. Here, we exploited natural diversity in 165 Saccharomyces cerevisiae strains isolated from diverse geographical and ecological niches, to identify mechanisms of hydrolysate-toxin tolerance. We performed genome-wide association (GWA) analysis to identify genetic variants underlying toxin tolerance, and gene knockouts and allele-swap experiments to validate the involvement of implicated genes. In the process of this work, we uncovered a surprising difference in genetic architecture depending on strain background: in all but one case, knockout of implicated genes had a significant effect on toxin tolerance in one strain, but no significant effect in another strain. In fact, whether or not the gene was involved in tolerance in each strain background had a bigger contribution to strain-specific variation than allelic differences. Our results suggest a major difference in the underlying network of causal genes in different strains, suggesting that mechanisms of hydrolysate tolerance are very dependent on the genetic background. These results could have significant implications for interpreting GWA results and raise important considerations for engineering strategies for industrial strain improvement.
0

Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model

Julie Rojas et al.May 28, 2024
+4
H
J
J
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
4

Modeling single-cell phenotypes links yeast stress acclimation to transcriptional repression and pre-stress cellular states

Andrew Bergen et al.Oct 24, 2023
+2
J
R
A
Abstract Stress defense and cell growth are inversely related in bulk culture analyses; however, these studies miss substantial cell-to-cell heterogeneity, thus obscuring true phenotypic relationships. Here, we devised a microfluidics system to characterize multiple phenotypes in single yeast cells over time before, during, and after salt stress. The system measured cell and colony size, growth rate, and cell-cycle phase along with nuclear trans-localization of two transcription factors: stress-activated Msn2 that regulates defense genes and Dot6 that represses ribosome biogenesis genes during an active stress response. By tracking cells dynamically, we discovered unexpected discordance between Msn2 and Dot6 behavior that revealed subpopulations of cells with distinct growth properties. Surprisingly, post-stress growth recovery was positively corelated with activation of the Dot6 repressor. In contrast, cells lacking Dot6 displayed slower growth acclimation, even though they grow normally in the absence of stress. We show that wild-type cells with a larger Dot6 response display faster production of Msn2-regulated Ctt1 protein, separable from the contribution of Msn2. These results are consistent with the model that transcriptional repression during acute stress in yeast provides a protective response, likely by redirecting translational capacity to induced transcripts.