SE
Samir El‐Dahr
Author with expertise in Molecular Mechanisms of Kidney Development and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2
h-index:
35
/
i10-index:
96
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining the dynamic chromatin landscape of nephron progenitors

Sylvia Hilliard et al.Jan 8, 2019
ABSTRACT Six2 + cap mesenchyme cells, also called nephrons progenitor cells (NPC), are precursors of all epithelial cell types of the nephron, the filtering unit of the kidney. Current evidence indicates that perinatal “old” NPC have a greater tendency to exit the progenitor niche and differentiate into nascent nephrons than their embryonic “young” counterpart. Understanding the underpinnings of NPC aging may offer insights to rejuvenate old NPC and expand the progenitor pool. Here, we compared the chromatin landscape of young and old NPC and found common features reflecting their shared lineage but also intrinsic differences in chromatin accessibility and enhancer landscape supporting the view that old NPC are epigenetically poised for differentiation. Annotation of open chromatin regions and active enhancers uncovered the transcription factor Bach2 as a potential link between the pro-renewal MAPK/AP1 and pro-differentiation Six2/b-catenin pathways that might be of critical importance in regulation of NPC fate. Our data provide the first glimpse of the dynamic chromatin landscape of NPC and serve as a platform for future studies of the impact of genetic or environmental perturbations on the epigenome of NPC. Summary statement Hilliard et al. investigated the chromatin landscape of native Six2 + nephron progenitors across their lifespan. They identified age-dependent changes in accessible chromatin and regulatory regions supporting the view that old nephron progenitors are epigenetically poised for differentiation.
0
Citation1
0
Save
5

Single cell regulatory architecture of human pancreatic islets suggests sex differences in β cell function and the pathogenesis of type 2 diabetes.

Mirza Qadir et al.Apr 14, 2024
Biological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the development of β cell failure observed more often in males. The mechanisms that drive sex differences in β cell failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in β cell failure in diabetes. Here, we examined sex and race differences in human pancreatic islets from up to 52 donors with and without T2D (including 37 donors from the Human Pancreas Analysis Program [HPAP] dataset) using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), dynamic hormone secretion, and bioenergetics. In cultured islets from nondiabetic (ND) donors, in the absence of the in vivo hormonal environment, sex differences in islet cell type gene accessibility and expression predominantly involved sex chromosomes. Of particular interest were sex differences in the X-linked KDM6A and Y-linked KDM5D chromatin remodelers in female and male islet cells respectively. Islets from T2D donors exhibited similar sex differences in differentially expressed genes (DEGs) from sex chromosomes. However, in contrast to islets from ND donors, islets from T2D donors exhibited major sex differences in DEGs from autosomes. Comparing β cells from T2D and ND donors revealed that females had more DEGs from autosomes compared to male β cells. Gene set enrichment analysis of female β cell DEGs showed a suppression of oxidative phosphorylation and electron transport chain pathways, while male β cell had suppressed insulin secretion pathways. Thus, although sex-specific differences in gene accessibility and expression of cultured ND human islets predominantly affect sex chromosome genes, major differences in autosomal gene expression between sexes appear during the transition to T2D and which highlight mitochondrial failure in female β cells.
5
4.3
Citation1
9
Save
0

The molecular and cellular anatomy of a fetal programming defect – the impact of low protein diet on the developing kidney

Kieran Short et al.Dec 5, 2023
Low nephron number correlates with the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development. Differences in the expression of genes involved in metabolism were identified in most cell types we analyzed, yielding imbalances and shifts in cellular energy production. We further demonstrate that LPD impedes branching morphogenesis and significantly reduces the number of pretubular aggregates - the initial precursors to nephron formation. The most striking observation was that LPD changes the developmental trajectory of nephron progenitor cells, driving the formation of a partially committed cell population which likely reflects a failure of cells to commit to nephron formation and which ultimately reduces endowment. This unique profile of a fetal programming defect demonstrates that low nephron endowment arises from the pleiotropic impact of changes in branching morphogenesis and nephron progenitor cell commitment, the latter of which highlights a critical role for nutrition in regulating the cell fate decisions underpinning nephron endowment.While a mother's diet and behavior can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.
4

Single-cell chromatin and gene-regulatory dynamics of mouse nephron progenitors

Sylvia Hilliard et al.Oct 14, 2021
STRUCTURED ABSTRACT Background Cis-regulatory elements (CREs), such as enhancers and promoters, and their cognate transcription factors play a central role in cell fate specification. Bulk analysis of CREs has provided insights into gene regulation in nephron progenitor cells (NPCs). However, the cellular resolution required to unravel the dynamic changes in regulatory elements associated with cell fate choices remains to be defined. Methods We integrated single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) in embryonic E16.5 (self-renewing) and postnatal P2 (primed) mouse Six2 GFP NPCs. This analysis revealed NPC diversity and identified candidate CREs. To validate these findings and gain additional insights into more differentiated cell types, we performed a multiome analysis of E16.5 and P2 kidneys. Results CRE accessibility recovered the diverse states of NPCs and precursors of differentiated cells. Single-cell types such as podocytes, proximal and distal precursors are marked by differentially accessible CREs. Domains of regulatory chromatin as defined by rich CRE-gene associations identified NPC fate-determining transcription factors (TF). Likewise, key TF expression correlates well with its regulon activity. Young NPCs exhibited enrichment in accessible motifs for bHLH, homeobox, and Forkhead TFs, while older NPCs were enriched in AP-1, HNF1, and HNF4 motif activity. A subset of Forkhead factors exhibiting high chromatin activity in podocyte precursors. Conclusion Defining the regulatory landscape of nephrogenesis at single-cell resolution informs the basic mechanisms of nephrogenesis and provides a foundation for future studies in disease states characterized by abnormal nephrogenesis. Significance Statement Nephron progenitor cells (NPCs) are a multipotent population giving rise to all cell types of the nephron. At any given time, the NPC’s choice to self-renew or differentiate is determined not only by its transcription factor (TF) repertoire but also by the genome accessibility of the cognate cis-regulatory elements. Using single-cell analysis, we demonstrate the heterogeneity of NPCs at the epigenetic level and observe dynamic and cell type-specific changes in chromatin accessibility. Fate-determining TFs harbor domains rich in interactive chromatin that are established prior to gene activation. These findings illustrate the importance of chromatin-based mechanisms in the regulation of nephrogenesis and may have implications for nephron regeneration and repair.