MH
Matthew Harper
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
12
h-index:
27
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proposed model of the Dictyostelium cAMP receptors bound to cAMP

Jack Greenhalgh et al.Jul 6, 2019
3’,5’-cyclic adenosine monophosphate (cAMP) is well known as a ubiquitous intracellular messenger regulating a diverse array of cellular processes. However, for a group of social amoebae or Dictyostelia undergoing starvation, intracellular cAMP is secreted in a pulsatile manner to their exterior. This then uniquely acts as a first messenger, triggering aggregation of the starving amoebae followed by their developmental progression towards multicellular fruiting bodies formation. Such developmental signalling for extracellularly-acting cAMP is well studied in the popular dictyostelid, Dictyostelium discoideum , and is mediated by a distinct family (‘class E’) of G protein-coupled receptors (GPCRs) collectively designated as the cAMP receptors (cARs). Whilst the biochemical aspects of these receptors are well characterised, little is known about their overall 3D architecture and structural basis for cAMP recognition and subtype-dependent changes in binding affinity. Using a ligand docking-guided homology modelling approach, we hereby present for the first time, plausible models of active forms of the cARs from D. discoideum . Our models highlight some structural features that may underlie the differential affinities of cAR isoforms for cAMP binding and also suggest few residues that may play important roles for the activation mechanism of this GPCR family.
0

Epigenetic regulation of PAR4-related platelet activation: mechanistic links between environmental exposure and cardiovascular disease

Laura Corbin et al.Nov 22, 2018
Protease-activated receptor 4 (PAR4) is a potent thrombin receptor. Epigenetic control of the F2RL3 locus (which encodes for PAR4) via DNA methylation is associated with both smoking and cardiovascular disease. We examined the association between DNA hypomethylation at F2RL3 and risk of cardiovascular disease, focusing on acute myocardial infarction (AMI) (n=853/2,352 cases/controls). We used in vitro cell models to dissect the role of DNA methylation in regulating expression of F2RL3. We investigated the interplay between F2RL3 DNA methylation and platelet function in human (n=41). Lastly, we used Mendelian randomization to unify observational and functional work by assessing evidence for causal relationships using data from UK Biobank (n=407,141) and CARDIoGRAMplusC4D (n=184,305). Observationally, one standard deviation (SD) decrease in DNA methylation at F2RL3 was associated with a 25% increase in the odds of AMI. In vitro, short-term exposure of cells to cigarette smoke reduced F2RL3 DNA methylation and increased gene expression. Transcriptional assays flagged a role for a CEBP recognition sequence in modulating the enhancer activity of F2RL3 exon 2. Lower DNA methylation at F2RL3 was associated with increased platelet reactivity in human. The estimated casual odds ratio of ischaemic heart disease was 1.03 (95% CI: 1.00, 1.07) per 1 SD decrease in F2RL3 DNA. In conclusion, we show that DNA methylation-dependent platelet activation is part of a complex system of features contributing to cardiovascular health. Tailoring therapeutic intervention to new knowledge of F2RL3/PAR4 function should be explored to ameliorate the detrimental effects of this risk factor on cardiovascular health.
0

TRPV4 stimulates colonic afferents through mucosal release of ATP and glutamate

Michelle Meng et al.Apr 15, 2024
Abstract Background and Purpose Abdominal pain is a leading cause of morbidity for people living with gastrointestinal disease. While the vanilloid transient receptor potential 4 (TRPV4) ion channel has been implicated in the pathogenesis of abdominal pain, the relative paucity of TRPV4 expression in colon-projecting sensory neurons suggests that non-neuronal cells may also contribute to TRPV4-mediated nociceptor stimulation. Experimental Approach Changes in murine colonic afferent activity were examined using ex vivo electrophysiology in tissues with the gut mucosa present or removed. ATP and glutamate release were measured by bioluminescence assay from human colon organoid cultures and mouse colon. Dorsal root ganglion sensory neuron activity was evaluated by Ca 2+ imaging when cultured alone or co-cultured with colonic mucosal cells. Key Results The TRPV4 agonist GSK1016790A elicited a robust increase in murine colonic afferent activity, which was abolished by removal of the gut mucosa. GSK1016790A promoted ATP and glutamate release from human colon organoid cultures and mouse colon. Inhibition of ATP degradation in mouse colon enhanced the afferent response to GSK1016790A. Pre-treatment with purinoreceptor or glutamate receptor antagonists attenuated and abolished the response to GSK1016790A when given alone or in combination, respectively. Sensory neurons co-cultured with colonic mucosal cells produced a marked increase in intracellular Ca 2+ to GSK1016790A compared to neurons cultured alone. Conclusions and Implications Our data indicate that mucosal release of ATP and glutamate is responsible for the stimulation of colonic afferents following TRPV4 activation. These findings highlight an opportunity to target the gut mucosa for the development of new visceral analgesics. Bullet Point Summary What is already known? Activation of TRPV4 causes visceral hypersensitivity via the stimulation of colonic afferents. What does this study add? TRPV4-mediated colonic afferent activation is dependent on mucosal release of ATP and glutamate. What is the clinical significance? Mucosal TRPV4-mediated colonic afferent activation provides a gut restricted target for treating abdominal pain.
0

Dissecting the roles of dynamin and clathrin in platelet pinocytosis

Ruby Baxter et al.Jun 10, 2024
Platelets endocytose many molecules from their environment. However, this process of pinocytosis in platelets is poorly understood. Key endocytic regulators such as dynamin, clathrin, CDC42 and Arf6 are expressed in platelets but their roles in pinocytosis is not known. Stimulated platelets form two subpopulations of pro-aggregatory and procoagulant platelets. The effect of stimulation on pinocytosis is also poorly understood. In this study, washed human platelets were treated with a range of endocytosis inhibitors and stimulated using different activators. The rate of pinocytosis was assessed using pHrodo green, a pH-sensitive 10 kDa dextran. In unstimulated platelets, pHrodo fluorescence increased over time and accumulated as intracellular puncta indicating constituently active pinocytosis. Stimulated platelets (both pro-aggregatory and procoagulant) had an elevated pinocytosis rate compared to unstimulated platelets. Dynamin inhibition blocked pinocytosis in unstimulated, pro-aggregatory and procoagulant platelets indicating that most platelet pinocytosis is dynamin dependent. Although pinocytosis was clathrin-independent in unstimulated and procoagulant populations, clathrin partially contributed to pinocytosis in pro-aggregatory platelets.