TM
Tadashi Makio
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
475
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The ER Thioredoxin-Related Transmembrane Protein TMX2 Controls Redox-Mediated Tethering of ER-Mitochondria Contacts (ERMCS)

Junsheng Chen et al.Apr 13, 2024
Summary Thioredoxin-related transmembrane proteins (TMX) of the endoplasmic reticulum (ER) have emerged as key regulators of ER membrane properties. Within the ER lumen, TMX proteins and other ER redox enzymes determine oxidative conditions, which control the formation of ER-mitochondria membrane contacts (ERMCS) and determine their function. ERMCS exhibit cytoplasmic redox nanodomains, derived from ER and mitochondrial reactive oxygen species (ROS), whose mechanistic regulation is uncharacterized. Our research has identified the ER protein TMX2, which uses its unique cytosolic thioredoxin domain to prevent cytosolic sulfenylation of mitochondrial outer membrane proteins such as TOM70 through a functional interaction with peroxiredoxin-1 (PRDX1). By doing so, TMX2 interferes with the TOM70 ERMCS tethering function and reduces mitochondrial Ca 2+ flux and metabolism. Recently, TMX2 mutations have been identified to cause a neurodevelopmental disorder with microcephaly, cortical malformations, and spasticity (NEDMCMS). Using TMX2-mutated NEDMCMS patient cells, we demonstrate that compromising TMX2 through mutation reproduces mitochondrial defects. In a fly in vivo model, TMX2 knockdown manifests predominantly in glial cells. Our results therefore provide important mechanistic insight into NEDMCMS and mechanistically link TMX2-mediated control of ERMCS to brain development and function. Graphical Abstract The transmembrane thioredoxin-related TMX2 prevents TOM70 sulfenylation at ERMCS, thus maintaining normal mitochondria metabolism in wild-type cells. TMX2 knockout leads to TOM70 sulfenylation and tight ERMCS formation. This then increases ROS production, unbalances mitochondrial lipids, and relatively shifts OXPHOS electron supply to complex II.
0
Citation1
0
Save
0

Passive diffusion through nuclear pore complexes regulates levels of the yeast SAGA and SLIK coactivators complexes

Tadashi Makio et al.Jul 24, 2019
Nuclear pore complexes (NPCs) control gene expression by regulating the bi-directional exchange of proteins and RNAs between nuclear and cytoplasmic compartments, including access of transcriptional regulators to the nucleoplasm. Here we show that the yeast nucleoporin Nup170, in addition to binding and silencing subtelomeric genes, supports transcription of genes regulated by the SAGA transcriptional activator. Specifically, we show that less SAGA complex is bound to target genes in the absence Nup170. Consistent with this observation, levels of the SAGA complex are decreased in cells lacking Nup170, while SAGA-related SLIK complexes are increased. This change in the ratio of SAGA to SLIK complexes is due to increased nuclear activity of Pep4, a protease responsible for production of the SLIK complex. Further analyses of various nucleoporin mutants revealed that the increased nuclear entry of Pep4 observed in the nup170Δ mutant likely occurs as consequence of an increase in the sieving limits of the NPC diffusion channel. On the basis of these results, we propose that changes in passive diffusion rates represents a mechanism for regulating SAGA/SLIK complex-mediated transcriptional events.