LB
Luís Borges-Araújo
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
8
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
17

SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility

Mariana Valério et al.Dec 1, 2021
+2
M
L
M
ABSTRACT The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed over 5 million people and is causing a devastating social and economic impact all over the world. The rise of new variants of concern (VOCs) represents a difficult challenge due to the loss vaccine and natural immunity, and increased transmissibility. All circulating VOCs contain mutations in the spike glycoprotein, which mediates fusion between the viral and host cell membranes, via its receptor binding domain (RBD) that binds to angiotensin-converting enzyme 2 (ACE2). In an attempt to understand the effect of RBD mutations in circulating VOCs, a lot of attention has been given to the RBD-ACE2 interaction. However, this type of analysis is limited, since it ignores more indirect effects, such as the conformational dynamics of the RBD itself. Observing that some VOCs mutations occur in residues that are not in direct contact with ACE2, we hypothesized that they could affect RBD conformational dynamics. To test this, we performed long atomistic (AA) molecular dynamics (MD) simulations to investigate the structural dynamics of wt RBD, and that of three circulating VOCs (alpha, beta, and delta). Our results show that in solution, wt RBD presents two distinct conformations: an “open” conformation where it is free to bind ACE2; and a “closed” conformation, where the RBM ridge blocks the binding surface. The alpha and beta variants significantly impact the open/closed equilibrium, shifting it towards the open conformation by roughly 20%. This shift likely increases ACE2 binding affinity. Simulations of the currently predominant delta variant RBD were extreme in this regard, in that a closed conformation was never observed. Instead, the system alternated between the before mentioned open conformation and an alternative “reversed” one, with a significantly changed orientation of the RBM ridge flanking the RBD. This alternate conformation could potentially provide a fitness advantage not only due to increased availability for ACE2 binding, but also by aiding antibody escape through epitope occlusion. These results support the hypothesis that VOCs, and particularly the delta variant, impact RBD conformational dynamics in a direction that simultaneously promotes efficient binding to ACE2 and antibody escape.
17
Citation5
0
Save
0

OLIVES: A Go̅-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field

Kasper Pedersen et al.Sep 5, 2024
+3
A
L
K
Coarse-grained molecular dynamics simulations enable the modeling of increasingly complex systems at millisecond timescales. The transferable coarse-grained force field Martini 3 has shown great promise in modeling a wide range of biochemical processes, yet folded proteins in Martini 3 are not stable without the application of external bias potentials, such as elastic networks or Go̅-like models. We herein develop an algorithm, called OLIVES, which identifies native contacts with hydrogen bond capabilities in coarse-grained proteins and use it to implement a novel Go̅-like model for Martini 3. We show that the protein structure instability originates in part from the lack of hydrogen bond energy in the coarse-grained force field representation. By using realistic hydrogen bond energies obtained from literature ab initio calculations, it is demonstrated that protein stability can be recovered by the reintroduction of a coarse-grained hydrogen bond network and that OLIVES removes the need for secondary structure restraints. OLIVES is validated against known protein complexes and at the same time addresses the open question of whether there is a need for protein quaternary structure bias in Martini 3 simulations. It is shown that OLIVES can reduce the number of bias terms, hereby speeding up Martini 3 simulations of proteins by up to ≈30% on a GPU architecture compared to the established Go̅MARTINI Go̅-like model.
0

GōMartini 3: From large conformational changes in proteins to environmental bias corrections

Paulo Souza et al.Apr 16, 2024
+15
C
L
P
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the new version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.