RI
Roger Innes
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(50% Open Access)
Cited by:
4,128
h-index:
58
/
i10-index:
100
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mitogen-activated protein kinase cascades in plants: a new nomenclature

MAPK Group et al.Jul 1, 2002
+18
K
K
M
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.
0
Citation1,166
0
Save
0

Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

Maureen Whalen et al.Jan 1, 1991
B
A
R
M
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.
0
Citation666
0
Save
0

Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector

Feng Shao et al.Aug 28, 2003
+3
J
C
F
Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis , resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.
0
Citation534
0
Save
0

Flavones induce expression of nodulation genes in Rhizobium

John Redmond et al.Oct 1, 1986
+3
M
M
J
0
Citation487
0
Save
0

A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis

Feng Shao et al.May 1, 2002
+2
Z
P
F
A Yersinia effector known as YopT and a Pseudomonas avirulence protein known as AvrPphB define a family of 19 proteins involved in bacterial pathogenesis. We show that both YopT and AvrPphB are cysteine proteases, and their proteolytic activities are dependent upon the invariant C/H/D residues conserved in the entire YopT family. YopT cleaves the posttranslationally modified Rho GTPases near their carboxyl termini, releasing them from the membrane. This leads to the disruption of actin cytoskeleton in host cells. The proteolytic activity of AvrPphB is essential for autoproteolytic cleavage of an AvrPphB precursor as well as for eliciting the hypersensitive response in plants. These findings provide new insights into mechanisms of animal and plant pathogenesis.
0
Citation464
0
Save
0

Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins

Brian Rutter et al.Nov 8, 2016
R
B
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
0
Citation416
0
Save
0

Indirect activation of a plant nucleotide binding site–leucine-rich repeat protein by a bacterial protease

Jules Ade et al.Feb 4, 2007
R
C
B
J
Nucleotide binding site–leucine-rich repeat (NBS–LRR) proteins mediate pathogen recognition in both mammals and plants. The molecular mechanisms by which pathogen molecules activate NBS–LRR proteins are poorly understood. Here we show that RPS5, a NBS–LRR protein from Arabidopsis , is activated by AvrPphB, a bacterial protease, via an indirect mechanism. When transiently expressed in Nicotiana benthamiana leaves, full-length RPS5 protein triggered programmed cell death, but only when coexpressed with AvrPphB and a second Arabidopsis protein, PBS1, which is a specific substrate of AvrPphB. Using coimmunoprecipitation analysis, we found that PBS1 is in a complex with the N-terminal coiled coil (CC) domain of RPS5 before exposure to AvrPphB. Deletion of the RPS5 LRR domain caused RPS5 to constitutively activate programmed cell death, even in the absence of AvrPphB and PBS1, and this activation depended on both the CC and NBS domains. The LRR and CC domains both coimmunoprecipitate with the NBS domain but not with each other. Thus, the LRR domain appears to function in part to inhibit RPS5 signaling, and cleavage of PBS1 by AvrPphB appears to release RPS5 from this inhibition. An amino acid substitution in the NBS site of RPS5 that is known to inhibit ATP binding in other NBS–LRR proteins blocked activation of RPS5, whereas a substitution thought to inhibit ATP hydrolysis constitutively activated RPS5. Combined, these data suggest that ATP versus ADP binding functions as a molecular switch that is flipped by cleavage of PBS1.
59

Arabidopsis Apoplastic Fluid Contains sRNA- and Circular RNA-Protein Complexes that Are Located Outside Extracellular Vesicles

Hana Karimi et al.Oct 3, 2021
+4
L
B
H
ABSTRACT Previously, we have shown that apoplastic wash fluid purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside EVs and are associated with proteins. Further analyses of these extracellular RNAs (exRNAs) revealed that they comprise both sRNAs and long non-coding RNAs (lncRNAs), including circular RNAs (circRNAs). We also found that exRNAs are highly enriched in the post-transcriptional modification N 6 -methyladenine (m 6 A). Consistent with this, we identified a putative m 6 A-binding protein in apoplastic wash fluid, GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7), as well as the small RNA-binding protein ARGONAUTE2 (AGO2). These two proteins co-immunoprecipitated with each other, and with lncRNAs, including circRNAs. Mutation of GRP7 or AGO2 caused changes in both the sRNA and lncRNA content of apoplastic wash fluid, suggesting that these proteins contribute to the secretion and/or stabilization of exRNAs. We propose that these extravesicular RNAs mediate host-induced gene silencing, rather than RNA inside EVs. One-sentence summary The apoplast of Arabidopsis leaves contains diverse small and long-noncoding RNAs, including circular RNAs, that are bound to protein complexes and are located outside extracellular vesicles.
59
Citation4
0
Save
0

Arabidopsis ENHANCED DISEASE RESISTANCE1 Protein Kinase Regulates the Association of ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN DEFICIENT4 to Inhibit Cell Death

Matthew Neubauer et al.Oct 16, 2019
+4
N
I
M
ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are sequence-related lipase-like proteins that function as a complex to regulate defense responses in Arabidopsis by both salicylic acid-dependent and independent pathways. Here we describe a gain-of-function mutation in PAD4 (S135F) that enhances resistance and cell death in response to infection by the powdery mildew pathogen Golovinomyces cichoracearum. The mutant PAD4 protein accumulates to wild-type levels in Arabidopsis cells, thus these phenotypes are unlikely to be due to PAD4 over accumulation. The phenotypes are similar to loss of function mutations in the protein kinase Enhanced Disease Resistance1 (EDR1), and previous work has shown that loss of PAD4 or EDS1 suppresses edr1-mediated phenotypes, placing these proteins downstream of EDR1. Here we show that EDR1 directly associates with EDS1 and PAD4 and inhibits their interaction in yeast and plant cells. We propose a model whereby EDR1 negatively regulates defense responses by interfering with the heteromeric association of EDS1 and PAD4. Our data indicate that the S135F mutation likely alters an EDS1-independent function of PAD4, potentially shedding light on a yet unknown PAD4 signaling function.
0

Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10 to 17 Nucleotide "Tiny" RNAs

Patricia Baldrich et al.Nov 17, 2018
+4
H
B
P
Small RNAs (sRNAs) that are 21 to 24 nucleotides (nt) in length are found in most eukaryotic organisms and regulate numerous biological functions, including transposon silencing, development, reproduction, and stress responses, typically via control of the stability and/or translation of target mRNAs. Major classes of sRNAs in plants include microRNAs (miRNAs) and small interfering RNAs (siRNAs); sRNAs are known to travel as a silencing signal from cell to cell, root to shoot, and even between host and pathogen. In mammals, sRNAs are transported inside extracellular vesicles (EVs), which are mobile lipid compartments that participate in intercellular communication. In addition to sRNAs, EVs carry proteins, lipids, metabolites, and potentially other types of nucleic acids. Here we report that plant EVs also contain diverse species of sRNA. We found that specific miRNAs and siRNAs are preferentially loaded into plant EVs. We also report a previously overlooked class of "tiny RNAs" (10 to 17 nt) that are highly enriched in EVs. This new RNA category of unknown function has a broad and very diverse genome origin and might correspond to degradation products.
Load More