KS
Keiichiro Suzuki
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(89% Open Access)
Cited by:
6,253
h-index:
64
/
i10-index:
155
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration

Keiichiro Suzuki et al.Nov 15, 2016
A method for CRISPR-based genome editing that harnesses cellular non-homologous end joining activity to achieve targeted DNA knock-in in non-dividing tissues. A current challenge in genome editing is achieving efficient targeted integration of transgenes in post-mitotic cells. These authors develop a method for CRISPR-based genome editing that harnesses the non-homologous-end-joining double-strand-break repair pathway to achieve targeted knock-in in dividing and non-dividing tissues. Although further development is needed to increase efficacy, the authors show the potential application of this method for targeted knock-in in post-mitotic neurons and other non-dividing tissues, and provide initial exploratory data on its potential application for disease correction in retinal pigment epithelium models. Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient1, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders2. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)3,4 technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
0
Citation988
0
Save
0

Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining

Yuuko Ninomiya et al.Aug 6, 2004
Gene disruption and overexpression play central roles in the analysis of gene function. Homologous recombination is, in principle, the most efficient method of disrupting, modifying, or replacing a target gene. Although homologous integration of exogenous DNA into the genome occurs readily in Saccharomyces cerevisiae , it is rare in many other organisms. We identified and disrupted Neurospora crassa genes homologous to human KU70 and KU80 , which encode proteins that function in nonhomologous end-joining of double-stranded DNA breaks. The resulting mutants, named mus - 51 and mus - 52 , showed higher sensitivity to methyl methanesulfonate, ethyl methanesulfonate, and bleomycin than wild type, but not to UV, 4-nitroquinoline 1-oxide, camptothecin, or hydroxyurea. Vegetative growth, conidiation, and ascospore production in homozygous crosses were normal. The frequency of integration of exogenous DNA into homologous sequences of the genome in the KU disruption strains of N. crassa was compared with that in wild type, mei-3 , and mus - 11 . In mei-3 and mus - 11 , which are defective in homologous recombination, none or few homologous integration events were observed under any conditions. When mtr target DNA with ≈2-kb 5′ and 3′ flanking regions was used for transformation of the KU disruption strains, 100% of transformants exhibited integration at the homologous site, compared to 10 to 30% for a wild-type recipient. Similar results were obtained when the ad-3A gene was targeted for disruption. These results indicate that KU disruption strains are efficient recipients for gene targeting.
0
Citation557
0
Save
0

Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome

Guang‐Hui Liu et al.Feb 23, 2011
The premature ageing disorder Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic condition characterized by a rapid onset of signs associated with normal ageing, such as atherosclerosis and the degeneration of vascular smooth-muscle cells. Liu et al. report that the altered structure of the nuclear envelope and epigenetic modifications that accumulate during physiological ageing or under specific disease conditions can be restored to normalcy by reprogramming somatic cell lines established with fibroblasts from patients with HGPS as induced pluripotent stem (iPS) cells. Directed differentiation of the resulting iPS cells as vascular smooth-muscle cells then leads to the appearance of the premature senescence phenotypes associated with vascular ageing. This HGPS iPS cell model provides a way to study the mechanisms regulating premature and normal ageing in vitro. Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease1,2,3,4,5, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs)6,7,8. HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9,10,11,12. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing6,12,13, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.
0
Citation529
0
Save
0

Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice

Xiangchun Wang et al.Oct 18, 2005
The core fucosylation (alpha1,6-fucosylation) of glycoproteins is widely distributed in mammalian tissues, and is altered under pathological conditions. To investigate physiological functions of the core fucose, we generated alpha1,6-fucosyltransferase (Fut8)-null mice and found that disruption of Fut8 induces severe growth retardation and death during postnatal development. Histopathological analysis revealed that Fut8(-/-) mice showed emphysema-like changes in the lung, verified by a physiological compliance analysis. Biochemical studies indicated that lungs from Fut8(-/-) mice exhibit a marked overexpression of matrix metalloproteinases (MMPs), such as MMP-12 and MMP-13, highly associated with lung-destructive phenotypes, and a down-regulation of extracellular matrix (ECM) proteins such as elastin, as well as retarded alveolar epithelia cell differentiation. These changes should be consistent with a deficiency in TGF-beta1 signaling, a pleiotropic factor that controls ECM homeostasis by down-regulating MMP expression and inducing ECM protein components. In fact, Fut8(-/-) mice have a marked dysregulation of TGF-beta1 receptor activation and signaling, as assessed by TGF-beta1 binding assays and Smad2 phosphorylation analysis. We also show that these TGF-beta1 receptor defects found in Fut8(-/-) cells can be rescued by reintroducing Fut8 into Fut8(-/-) cells. Furthermore, exogenous TGF-beta1 potentially rescued emphysema-like phenotype and concomitantly reduced MMP expression in Fut8(-/-) lung. We propose that the lack of core fucosylation of TGF-beta1 receptors is crucial for a developmental and progressive/destructive emphysema, suggesting that perturbation of this function could underlie certain cases of human emphysema.
0

Progressive degeneration of human neural stem cells caused by pathogenic LRRK2

Guang‐Hui Liu et al.Oct 16, 2012
Investigation of neural cells from post-mortem human brains and differentiated from patient-derived induced pluripotent stem cells shows that the LRRK2 mutation (G2019S) associated with familial and sporadic Parkinson's disease correlates with abnormalities at the nuclear envelope. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is associated with familial and sporadic Parkinson's disease, but the pathological mechanism involved is unclear. Here, Juan Carlos Izpisua Belmonte and colleagues report that neurons bearing the LRRK2(G2019S) mutation have profound abnormalities at the nuclear envelope. The authors validate this finding in neurons differentiated from patient-derived induced pluripotent stem cells, as well as in neurons from postmortem brains. These findings associate the nucleus with Parkinson's disease pathology, and have implications for diagnosis and the potential development of targeted therapeutics. Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing1,2,3,4. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson’s disease as well as impairment of adult neurogenesis in mice5. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson’s disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson’s disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson’s disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson’s disease pathology and may help to open new avenues for Parkinson’s disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
0
Citation315
0
Save
Load More