PD
Ping Du
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
16
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The Skeletal Muscle Circadian Clock Regulates Titin Splicing Through RBM20

Lance Riley et al.May 28, 2021
Abstract Circadian rhythms are maintained by a cell autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMS Bmal1 -/- ) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, LC-MS, and SDS-VAGE. This alteration in titin’s spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMS Bmal1 -/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20 , a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant down-regulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.
1
Citation1
0
Save
0

New role of cardiomyocyte Bmal1 in the regulation of sex-specific heart transcriptomes

Xiping Zhang et al.Apr 21, 2024
Abstract It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice. Here, we show that the the core clock genes are expressed in common in both sexes but the circadian transcriptome of the mouse heart is very sex-specific. Hearts from female mice expressed significantly more rhythmically expressed genes (REGs) than male hearts and the temporal pattern of REGs was distinctly different between sexes. We next used a cardiomyocyte-specific knock out of the core clock gene, Bmal1 , to investigate its role in sex-specific gene expression in the heart. All sex differences in the circadian transcriptomes were significantly diminished with cardiomyocyte-specific loss of Bmal1 . Surprisingly, loss of cardiomyocyte Bmal1 also resulted in a roughly 8-fold reduction in the number of all the differentially expressed genes between male and female hearts. We conclude that cardiomyocyte-specific Bmal1 , and potentially the core clock mechanism, is vital in conferring sex-specific gene expression in the adult mouse heart.
0
Citation1
0
Save