MC
Minerva Carrasquillo
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(84% Open Access)
Cited by:
1,125
h-index:
38
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases

Mariet Allen et al.Oct 10, 2016
+31
S
B
M
Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.
2
Citation394
0
Save
1

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

Solveig Sieberts et al.Oct 12, 2020
+100
S
L
S
Abstract The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis- eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
1
Citation305
0
Save
0

Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease

Minerva Carrasquillo et al.Jan 11, 2009
+13
V
F
M
Steve Younkin and colleagues report the results of a genome-wide association study for late-onset Alzheimer's disease. A variant on the X chromosome in PCDH11X is associated with increased risk of the disorder. PCDH11X encodes a protocadherin and is a member of a cell surface receptor molecule family. By analyzing late-onset Alzheimer's disease (LOAD) in a genome-wide association study (313,504 SNPs, three series, 844 cases and 1,255 controls) and evaluating the 25 SNPs with the most significant allelic association in four additional series (1,547 cases and 1,209 controls), we identified a SNP (rs5984894) on Xq21.3 in PCDH11X that is strongly associated with LOAD in individuals of European descent from the United States. Analysis of rs5984894 by multivariable logistic regression adjusted for sex gave global P values of 5.7 × 10−5 in stage 1, 4.8 × 10−6 in stage 2 and 3.9 × 10−12 in the combined data. Odds ratios were 1.75 (95% CI = 1.42–2.16) for female homozygotes (P = 2.0 × 10−7) and 1.26 (95% CI = 1.05–1.51) for female heterozygotes (P = 0.01) compared to female noncarriers. For male hemizygotes (P = 0.07) compared to male noncarriers, the odds ratio was 1.18 (95% CI = 0.99–1.41).
0
Citation295
0
Save
0

Late-onset Alzheimer disease risk variants mark brain regulatory loci

Mariet Allen et al.Aug 1, 2015
+22
M
M
M
To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation.Expression levels from the cerebellum (CER) and temporal cortex (TCX) were obtained using Illumina whole-genome cDNA-mediated annealing, selection, extension, and ligation assay (WG-DASL) for ∼400 autopsied patients (∼200 with AD and ∼200 with non-AD pathologies). We tested 12 significant LOAD genome-wide association study (GWAS) index single nucleotide polymorphisms (SNPs) for cis association with levels of 34 genes within ±100 kb. We also evaluated brain levels of 14 LOAD GWAS candidate genes for association with 1,899 cis-SNPs. Significant associations were validated in a subset of TCX samples using next-generation RNA sequencing (RNAseq).We identified strong associations of brain CR1, HLA-DRB1, and PILRB levels with LOAD GWAS index SNPs. We also detected other strong cis-SNPs for LOAD candidate genes MEF2C, ZCWPW1, and SLC24A4. MEF2C and SLC24A4, but not ZCWPW1 cis-SNPs, also associate with LOAD risk, independent of the index SNPs. The TCX expression associations could be validated with RNAseq for CR1, HLA-DRB1, ZCWPW1, and SLC24A4.Our results suggest that some LOAD GWAS variants mark brain regulatory loci, nominate genes under regulation by LOAD risk variants, and annotate these variants for their brain regulatory effects.
0
Citation66
0
Save
4

A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer's disease risk and increased TREML1 and TREM2 brain gene expression

Minerva Carrasquillo et al.Dec 8, 2016
+27
J
M
M
Abstract Introduction We hypothesized that common Alzheimer's disease (AD)‐associated variants within the triggering receptor expressed on myeloid ( TREM ) gene cluster influence disease through gene expression. Methods Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. Results A variant within a DNase hypersensitive site 5′ of TREM2 , rs9357347‐C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10 −3 and 4.6 × 10 −2 , respectively). Meta‐analysis on expression quantitative trait locus results from three independent data sets ( n = 1006) confirmed these associations (uncorrected P = 3.4 × 10 −2 and 3.5 × 10 −3 , Bonferroni‐corrected P = 6.7 × 10 −2 and 7.1 × 10 −3 , respectively). Discussion Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome‐wide association study meta‐analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD.
4
Citation51
0
Save
4

Single Nuclei Transcriptome Reveals Perturbed Brain Vascular Molecules in Alzheimer’s Disease

Özkan İş et al.Dec 29, 2021
+20
A
T
Ö
Abstract Blood-brain barrier (BBB) dysfunction is well-known in Alzheimer’s disease (AD), but the precise molecular changes contributing to its pathophysiology are unclear. To understand the transcriptional changes in brain vascular cells, we performed single nucleus RNA sequencing (snRNAseq) of temporal cortex tissue in 24 AD and control brains resulting in 79,751 nuclei, 4,604 of which formed three distinct vascular clusters characterized as activated pericytes, endothelia and resting pericytes. We identified differentially expressed genes (DEGs) and their enriched pathways in these clusters and detected the most transcriptional changes within activated pericytes. Using our data and a knowledge-based predictive algorithm, we discovered and prioritized molecular interactions between vascular and astrocyte clusters, the main cell types of the gliovascular unit (GVU) of the BBB. Vascular targets predicted to interact with astrocytic ligands have biological functions in signalling, angiogenesis, amyloid ß metabolism and cytoskeletal structure. Top astrocytic and vascular interacting molecules include both novel and known AD risk genes such as APOE , APP and ECE1 . Our findings provide information on transcriptional changes in predicted vascular-astrocytic partners at the GVU, bringing insights to the molecular mechanisms of BBB breakdown in AD. Graphical Abstract Pericytes (yellow), endothelia (salmon) and astrocytes (purple) that form the gliovascular unit (GVU) at the blood brain barrier (BBB) were interrogated for their differentially expressed genes (DEG) and vascular cell (pericyte or endothelia) to astrocyte interactions using single nucleus RNA sequencing (RNAseq) transcriptome obtained from brains of Alzheimer’s disease (AD) patients and controls. We identified many upregulated (red) or downregulated (blue) DEGs in AD brains in these cell types. These genes have known biological functions in amyloid ß (Aß) clearance, immune modulation, astrogliosis and neuronal death. Novel predicted interactions were identified between vascular cells and astrocytic DEGs. Collectively, our findings highlight the vast transcriptome changes that occur at the GVU and provide mechanistic insights into BBB dysfunction in AD. This figure was created with Biorender.com.
4
Citation6
0
Save
31

Leveraging selective hippocampal vulnerability among Alzheimer’s disease subtypes reveals a novel tau binding partner SERPINA5

Angela Crist et al.Dec 20, 2020
+25
K
H
A
Summary Selective vulnerability is a central concept to the myriad of devastating neurodegenerative disorders. Although hippocampus and cortex are selectively vulnerable in Alzheimer’s disease (AD), the degree of involvement lies along a spectrum that we previously defined as AD subtypes revealing distinct clinical correlates. To operationalize heterogeneity of disease spectrum, we classified corticolimbic patterns of neurofibrillary tangles to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. Using a multidisciplinary approach, we uncovered disease-relevant hippocampal gene expression changes. Biological relevance was prioritized using machine learning and several levels of human validation. This resulted in five genes highly predictive of neuropathologically diagnosed AD: SERPINA5, RYBP, SLC38A2, FEM1B , and PYDC1 . Deeper investigation revealed SERPINA5 to be a novel tau binding partner that may represent a “tipping point” in the dynamic maturity of neurofibrillary tangles. Our study highlights the importance of embracing heterogeneity of the human brain to yield promising gene candidates as exampled by SERPINA5 .
31
Citation2
0
Save
0

Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction

Özkan İş et al.Jun 20, 2024
+37
J
X
Ö
Abstract To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3 , upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA , downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3 -astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease.
0
Citation2
0
Save
0

Bridging the Gap: Multi-Omics Profiling of Brain Tissue in Alzheimer's Disease and Older Controls in Multi-Ethnic Populations

Joseph Reddy et al.Apr 20, 2024
+51
Y
E
J
INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.
0
Citation2
0
Save
0

Identification of novel Alzheimer’s disease genes co-expressed with TREM2

Joseph Reddy et al.Nov 15, 2020
+15
Y
J
J
Abstract By analyzing whole-exome data from the Alzheimer’s disease sequencing project (ADSP), we identify a set of 4 genes that show highly significant association with Alzheimer’s disease (AD). These genes were identified within a human TREM2 co-expression network using a novel approach wherein prioritized polygenic score analyses were performed sequentially to identify significant polygenic components. Two of the 4 genes ( TREM2 , RIN3 ) have previously been linked to AD and two ( ATP8B 4, IL17RA ) are novel. Like TREM2 , the 2 novel AD genes are selectively expressed in human microglial cells. The most significant variants in ATP8B4 and IL17RA are non-synonymous variants with strong effects comparable to the APOE ε4 and ε2 alleles. These protein-altering variants will provide unique opportunities to further explore the biological role of microglial cells in AD and help inform future immune modulatory therapeutic development for AD.
0
Citation1
0
Save
Load More