Abstract Objective Pulmonary hypertension (PH) is a cardiopulmonary disease manifesting in increased pulmonary arterial pressure and right ventricular dysfunction. PH pathogenesis involves extensive pulmonary vascular remodeling precipitated, at least in part, by endothelial reprogramming. Mounting evidence points to endothelial-to-mesenchymal transition (EndMT) as an important potentiator of endothelial reprogramming in PH, yet progress in dissecting these processes remains limited. Approach and Results Lung samples from pulmonary arterial hypertension (PAH) patients and two rodent models of PH were used. Expression of the scaffolding protein ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50, or NHERF1) was downregulated in PAH patient pulmonary arteries and isolated pulmonary arterial endothelial cells (PAECs), and in PH animal lung tissue and mouse isolated PAECs. In human PAECs in vitro, EBP50 was downregulated by PH-relevant stimuli, hypoxia and proinflammatory cytokine interleukin-1 beta (IL-1β). Phenocopy of EBP50 reduction in PAECs time-dependently increased expression and nuclear abundance of EndMT transcription factors Snail and Zeb1, and potentiated hypoxia-driven upregulation of Slug. Loss of EBP50 also drove expression of mesenchymal markers S100A4, fibronectin, N-cadherin, and transgelin (SM22), and inhibited cell proliferation and barrier function. In vivo studies on female EBP50 +/- mice demonstrated that downregulation of EBP50 exacerbated the chronic hypoxia-induced rise in RV maximum pressure. Conclusions These data identify EBP50 as a key regulator of EndMT in PH whose expression is downregulated in PH patient pulmonary endothelium and whose partial deletion exacerbates PH disease manifestations in rodents, opening doors for future therapeutic strategies to target EBP50 restoration to reverse PH.