AK
Andreas Keil
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(64% Open Access)
Cited by:
2,360
h-index:
64
/
i10-index:
211
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neural Substrate of the Late Positive Potential in Emotional Processing

Yuelu Liu et al.Oct 17, 2012
The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research, the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood oxygen level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP–BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures significant LPP–BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network composed of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence specific.
0

Sleepless and Desynchronized: Impaired Inter Trial Phase Coherence of Steady-State Potentials Following Sleep Deprivation

Moranne Eidelman-Rothman et al.Nov 15, 2018
1. Abstract Sleep loss has detrimental effects on cognitive and emotional functioning. These impairments have been associated with alterations in EEG measures of power spectrum and event-related potentials, however the impact of sleep loss on inter trial phase coherence (ITPC), a measure of phase consistency over experimental trials, remains mostly unknown. ITPC is thought to reflect the ability of the neural response to temporally synchronize with relevant events, thus optimizing information processing. In the current study we investigated the effects of sleep deprivation on information processing by evaluating the phase consistency of steady-state visual evoked potentials (ssVEPs) as well as amplitude-based measures of ssVEP, obtained from a group of 18 healthy individuals following 24 hours of total sleep deprivation and after a night of habitual sleep. An ssVEP task was utilized, which included the presentation of dots flickering at 7.5 Hz, along with a cognitive-emotional task. Our results show that ITPC is significantly reduced under sleep deprivation relative to habitual sleep. Interestingly, decreased ITPC under sleep deprivation was associated with decreased behavioral performance in the psychomotor vigilance task (PVT), a validate measure of reduced vigilance following lack of sleep. The results suggest that the capability of the brain to synchronize with rhythmic stimuli is disrupted without sleep. Thus, decreased ITPC may represent an objective and mechanistic measure of sleep loss, allowing future work to study the relation between brain-world synchrony and the specific functional impairments associated with sleep deprivation.
4

Effects of Neurofeedback training on performance in laboratory tasks: A systematic review

Payton Chiasson et al.Oct 18, 2022
Abstract Neurofeedback procedures are attracting increasing attention in the neuroscience community. Based on the principle that participants, through suitable feedback, may learn to affect specific aspects of their brain activity, neurofeedback has been applied to basic research, translational, and clinical science alike. A large segment of the extant empirical research as well as review articles have focused on the extent to which neurofeedback interventions affect mental health outcomes, cognitive capacity, aging, and other complex behaviors. Another segment has aimed to characterize the extent to which neurofeedback affects the targeted neural processes. At this time, there is no current systematic review of the effects of neurofeedback on healthy participants’ performance in experimental tasks. Such a review is relevant in this rapidly evolving field because changes in experimental task performance are traditionally considered a hallmark of changing neurocognitive processes, often established in neurotypical individuals. This systematic review addresses this gap in the literature using the PRISMA method, building on earlier reviews on the same topic. Empirical studies using EEG or fMRI to alter brain processes linked to established, well-defined cognitive and affective laboratory tasks were reviewed. Substantial variability was found regarding the nature of the control for placebo effects, the implementation of the feedback, and the neural targets of feedback. Importantly, only a minority of the studies reported statistically meaningful effects of neurofeedback on performance in cognitive and affective tasks. Examining effect sizes and p-values in a subset of studies found no evidence for reporting bias, while also not finding systematic relations between study characteristics such as sample size or experimental control on the one hand and efficacy on the other. Implications for future work are discussed.
4
Citation1
0
Save
0

Stimulus repetition induces a two-stage learning process in primary visual cortex

Lihan Cui et al.Sep 8, 2024
Repeated stimulus exposure alters the brain's response to the stimulus. We investigated the underlying neural mechanisms by recording functional MRI data from human observers passively viewing 120 presentations of two Gabor patches (each Gabor repeating 60 times). We evaluated support for two prominent models of stimulus repetition, the fatigue model and the sharpening model. Our results uncovered a two-stage learning process in the primary visual cortex. In Stage 1, univariate BOLD activation in V1 decreased over the first twelve repetitions of the stimuli, replicating the well-known effect of repetition suppression. Applying MVPA decoding along with a moving window approach, we found that (1) the decoding accuracy between the two Gabors decreased from above-chance level (~60% to ~70%) at the beginning of the stage to chance level at the end of the stage (~50%). This result, together with the accompanying weight map analysis, suggested that the learning dynamics in Stage 1 were consistent with the predictions of the fatigue model. In Stage 2, univariate BOLD activation for the remaining 48 repetitions of the two stimuli exhibited significant fluctuations but no systematic trend. The MVPA decoding accuracy between the two Gabor patches was at chance level initially and became progressively higher as stimulus repetition continued, rising above and staying above chance level starting at the ~35th repetition. Thus, results from the second stage supported the notion that sustained and prolonged stimulus repetition prompts sharpened representations. Additional analyses addressed (1) whether the neural patterns within each learning stage remained stable and (2) whether new neural patterns were evoked in Stage 2 relative to Stage 1.
Load More