DE
Devon Eddins
Author with expertise in Coronavirus Disease 2019
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Pathogenic neutrophilia drives acute respiratory distress syndrome in severe COVID-19 patients

Devon Eddins et al.Jun 3, 2021
+16
A
J
D
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing COVID-19 pandemic have caused ∼40 million cases and over 648,000 deaths in the United States alone. Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African-American (AA) patients in some areas, yet targeted studies within this demographic are scant. Multi-omics single-cell analyses of immune profiles from airways and matching blood samples of Black/AA patients revealed low viral load, yet pronounced and persistent pulmonary neutrophilia with advanced features of cytokine release syndrome and acute respiratory distress syndrome (ARDS), including exacerbated production of IL-8, IL-1β, IL-6, and CCL3/4 along with elevated levels of neutrophil elastase and myeloperoxidase. Circulating S100A12 + /IFITM2 + mature neutrophils are recruited via the IL-8/CXCR2 axis, which emerges as a potential therapeutic target to reduce pathogenic neutrophilia and constrain ARDS in severe COVID-19. Graphical Abstract The lung pathology due to severe COVID-19 is marked by a perpetual pathogenic neutrophilia, leading to acute respiratory distress syndrome (ARDS) even in the absence of viral burden. Circulating mature neutrophils are recruited to the airways via IL-8 (CXCL8)/CXCR2 chemotaxis. Recently migrated neutrophils further differentiate into a transcriptionally active and hyperinflammatory state, with an exacerbated expression of IL-8 ( CXCL8 ), IL-1β ( IL1B ), CCL3, CCL4 , neutrophil elastase (NE), and myeloperoxidase (MPO) activity. Airway neutrophils and recruited inflammatory monocytes further increase their production of IL-8 ( CXCL8 ), perpetuating lung neutrophilia in a feedforward loop. MdCs and T cells produce IL-1β and TNF, driving neutrophils reprogramming and survival.
19
Citation1
0
Save
6

Inactivation of SARS Coronavirus 2 and COVID-19 patient samples for contemporary immunology and metabolomics studies

Devon Eddins et al.Oct 24, 2021
+12
J
L
D
Summary In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from Wuhan, China spurring the Coronavirus Disease-19 (COVID-19) pandemic that has resulted in over 219 million confirmed cases and nearly 4.6 million deaths worldwide. Intensive research efforts ensued to constrain SARS-CoV-2 and reduce COVID-19 disease burden. Due to the severity of this disease, the US Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level 3 (BSL3) containment laboratories. Therefore, it is imperative to develop viral inactivation procedures that permit samples to be transferred and manipulated at lower containment levels (i.e., BSL2), and maintain the fidelity of downstream assays to expedite the development of medical countermeasures (MCMs). We demonstrate optimal conditions for complete viral inactivation following fixation of infected cells with paraformaldehyde solution or other commonly-used branded reagents for flow cytometry, UVC inactivation in sera and respiratory secretions for protein and antibody detection assays, heat inactivation following cDNA amplification of single-cell emulsions for droplet-based single-cell mRNA sequencing applications, and extraction with an organic solvent for metabolomic studies. Thus, we provide a suite of protocols for viral inactivation of SARS-CoV-2 and COVID-19 patient samples for downstream contemporary immunology assays that facilitate sample transfer to BSL2, providing a conceptual framework for rapid initiation of high-fidelity research as the COVID-19 pandemic continues.
6
Citation1
0
Save
0

Lifting the curse from high dimensional data: Automated projection pursuit clustering for the variety of biological data modalities

Claire Simpson et al.Apr 22, 2024
+13
E
A
C
Abstract Unsupervised clustering is a powerful machine-learning technique widely used to analyze high-dimensional biological data. It plays a crucial role in uncovering patterns, structure, and inherent relationships within complex datasets without relying on predefined labels. In the context of biology, high-dimensional data may include transcriptomics, proteomics, and a variety of single-cell omics data. Most existing clustering algorithms operate directly in the high-dimensional space, and their performance may be negatively affected by the phenomenon known as the curse of dimensionality. Here, we show an alternative clustering approach that alleviates the curse by sequentially projecting high-dimensional data into a low-dimensional representation. We validated the effectiveness of our approach, named APP, across various biological data modalities, including flow and mass cytometry data, scRNA-seq, multiplex imaging data, and T-cell receptor repertoire data. APP efficiently recapitulated experimentally validated cell-type definitions and revealed new biologically meaningful patterns.
5

The novel compensatory reciprocal interplay between neutrophils and monocytes drives cancer progression

Zhihong Chen et al.Jul 22, 2022
+11
N
D
Z
SUMMARY Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genomic editing, we generated a mouse model that is deficient of all monocyte chemoattractant proteins (MCP). Using this strain, we effectively abolished monocyte infiltration in glioblastoma (GBM) and hepatocellular carcinoma (HCC) murine models, which were enriched for monocytes or neutrophils, respectively. Remarkably, eliminating monocyte chemoattraction invokes a significant compensatory neutrophil influx in GBM, but not in HCC. Single-cell RNA sequencing revealed that intratumoral neutrophils promoted proneural-to-mesenchymal transition in GBM, and supported tumor aggression by facilitating hypoxia response via TNF production. Importantly, genetic or pharmacological inhibiting neutrophil in HCC or qMCP-KO GBM extended the survival of tumor-bearing mice. Our findings emphasize the importance of targeting both monocytes and neutrophils simultaneously for cancer immunotherapy. In Brief Eliminating monocyte chemoattraction invokes compensatory neutrophil influx in tumor, and vice versa, rendering current myeloid-targeted therapies ineffective. Using genetic and pharmacological approaches combined with novel mouse models of GBM and HCC, we provide credence advocating for combinational therapies aiming at inhibiting both monocytes and neutrophils simultaneously. Highlights • Blocking monocyte chemoattraction results in increased neutrophil infiltration. • Increased neutrophil recruitment induces GBM PN to MES transition. • Inhibiting neutrophil infiltration in monocyte-deficient tumors improves mouse GBM survival. • Blocking neutrophil, but not monocyte, infiltration in HCC prolongs mouse survival.
0

Hematopoietic stem cell requirement for macrophage regeneration is tissue-specific

Devon Eddins et al.Apr 10, 2021
+6
J
A
D
Abstract Tissue-resident macrophages (TRMΦ) are important immune sentinels responsible for maintaining tissue and immune homeostasis within their specific niche. Recently, the origins of TRMΦ have undergone intense scrutiny where now most TRMΦ are thought to originate early during embryonic development independent of hematopoietic stem cells (HSCs). We previously characterized two distinct subsets of mouse peritoneal cavity macrophages (Large and Small Peritoneal Macrophages; LPM and SPM, respectively) whose origins and relationship to both fetal and adult long-term (LT)-HSCs have not been fully investigated. Here we employ highly purified LT-HSC transplantation and in vivo lineage tracing to show a dual ontogeny for LPM and SPM, where the initial wave of peritoneal macrophages is seeded from yolk sac-derived precursors, which later require LT-HSCs for regeneration. In contrast, transplanted fetal and adult LT-HSCs are not able to regenerate brain-resident microglia. Thus, we demonstrate that LT-HSCs retain the potential to develop into TRMΦ, but their requirement is tissue-specific.