PR
Philipp Rathert
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,291
h-index:
21
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation

Arunkumar Dhayalan et al.Jun 12, 2010
+4
P
A
A
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.
0

Transcriptional plasticity promotes primary and acquired resistance to BET inhibition

Philipp Rathert et al.Sep 1, 2015
+20
N
E
P
BET bromodomain inhibitors are being explored as potential therapeutics in cancer; here, AML cells are shown to evade sensitivity to BET inhibition through rewiring the transcriptional regulation of BRD4 target genes such as MYC in a process that is facilitated by suppression of PRC2 and WNT signalling activation. BET inhibitors that target bromodomain chromatin readers such as BRD4 are being explored as potential therapeutics in cancer. Two papers published in this issue of Nature identify mechanisms that may be involved in resistance to BET inhibition in models of leukaemia. In an MLL–AF9 model, Mark Dawson and colleagues find that resistance emerges from leukaemic stem cells and is, in part, a consequence of increased Wnt signalling. Johannes Zuber and colleagues find that suppression of the PRC2 complex renders acute myeloid leukaemia cells resistant to BET inhibition by rewiring the transcriptional regulation of BRD4 target genes such as MYC. Wnt signalling is also implicated as a key driver of resistance. Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML)1,2, bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers3,4,5. While clinical trials have reported single-agent activity in advanced haematological malignancies6, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL–AF9;NrasG12D-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.
0
Citation445
0
Save
0

Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail

Yingying Zhang et al.Mar 11, 2010
+8
S
R
Y
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.
0

Mutations of R882 in DNMT3A change flanking sequence preferences and cellular methylation patterns in AML

Max Emperle et al.Aug 1, 2019
+6
S
S
M
DNMT3A R882 mutations are frequently observed in AML including the abundant R882H and the rare R882C, R882P and R882S. Using deep enzymology we show here that the DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences of R882H resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Activities and flanking sequence preferences of R882C, R882P and R882S were determined as well. Genomic methylation patterns after expression of wildtype DNMT3A and R882H in human cells reflect the flanking sequence preferences. R882H specific hypermethylation in AML patients are correlated with R882H flanking sequence preferences. The hypermethylation events are accompanied by R882H specific misregulation of several genes with strong cancer connection in AML patients, which are potential downstream targets of R882H.
0

CRISPR gene and transcriptome engineering (CRISPRgate) improves loss-of-function genetic screening approaches

Jannis Stadager et al.May 14, 2024
+9
L
C
J
Abstract The CRISPR/Cas9 technology has revolutionized genotype-to-phenotype assignments through large-scale loss-of-function (LOF) screens. However, limitations like editing inefficiencies and unperturbed genes cause significant noise in data collection. To address this, we introduce CRISPR Gene and Transcriptome Engineering (CRISPRgate), which uses two specific sgRNAs to simultaneously repress and cleave the target gene within the same cell, increasing LOF efficiencies and reproducibility. CRISPRgate outperforms conventional CRISPRko, CRISPRi, or CRISPRoff systems in suppressing challenging targets and regulators of cell proliferation. Additionally, it efficiently suppresses modulators of EMT and impairs neuronal differentiation in a human iPSC model. In a multiplexed chromatin-focused phenotypic LOF screen, CRISPRgate exhibits improved depletion efficiency, reduced sgRNA performance variance, and accelerated gene depletion compared to individual CRISPRi or CRISPRko, ensuring consistency in phenotypic effects and identifying more significant gene hits. By combining CRISPRko and CRISPRi, CRISPRgate increases LOF rates without increasing genotoxic stress, facilitating library size reduction for advanced LOF screens. Motivation The CRISPR technology (CRISPRko/CRISPRi) enables the specific depletion of target genes with fewer off-target effects, facilitating precise investigations of gene function. Despite its benefits, CRISPR applications have limitations. Residual active protein expression mediated by in-frame DNA repair or alternative splicing 1–8 as well as strong epigenetic regulation and difficulties in sgRNA design to the transcription start site (TSS) 9–12 hinder the full potential of loss-of-function studies using CRISPRko or CRISPRi. We aimed to achieve robust target gene reduction in order to improve the reproducibility of the CRISPR technology by integrating the widely used CRISPRko and CRISPRi approaches into a single application.
0

MTHFD1 is a genetic interactor of BRD4 and links folate metabolism to transcriptional regulation

Sara Sdelci et al.Oct 10, 2018
+35
K
P
S
The histone acetyl-reader BRD4 is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1. We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression, and pharmacologic inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin-associated suggests a direct role for nuclear metabolism in the control of gene expression.
0

SETDB1 activity is globally directed by H3K14 acetylation via its Triple Tudor Domain

Thyagarajan Chandrasekaran et al.Apr 22, 2024
+7
M
T
T
SETDB1 is a major H3K9 methyltransferase involved in heterochromatin formation and silencing of repeat elements. It contains a unique Triple Tudor Domain (3TD) which specifically binds the dual modification of H3K14ac in the presence of H3K9me1/2/3. Here, we explored the role of the 3TD H3-tail interaction for the H3K9 methylation activity of SETDB1. We generated a binding reduced 3TD mutant and demonstrate in biochemical methylation assays on peptides and recombinant nucleosomes containing H3K14ac analogs, that H3K14 acetylation is crucial for the 3TD mediated recruitment of SETDB1. We also observe this effect in cells where SETDB1 binding and activity is globally correlated with H3K14ac, and KO of the H3K14 acetyltransferase HBO1 causes a drastic reduction in H3K9me3 levels at SETDB1 dependent sites. Further analyses revealed that 3TD particularly important at specific target regions like L1M repeat elements, where SETDB1 KO cannot be efficiently reconstituted by the 3TD mutant of SETDB1. In summary, our data demonstrate that the H3K9me3 and H3K14ac are not antagonistic marks but rather the presence of H3K14ac is required for SETDB1 recruitment via 3TD binding to H3K9me1/2/3-K14ac and establishment of H3K9me3.