OG
Omid Gholamalamdari
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TSA-Seq 2.0 reveals both conserved and variable chromosomal distances to nuclear speckles

Liguo Zhang et al.Oct 30, 2019
+4
O
Y
L
TSA-Seq measures chromosomal distances from specific nuclear compartments genome-wide but requires ≥100 million cells. We report 10-20-fold increased sensitivity using TSA-Seq 2.0 which deliberately saturates protein-labeling but preserves distance mapping by the still unsaturated DNA-labeling. Mapping nuclear speckle distances in four cell lines reveals highly transcriptionally active, conserved speckle-associated chromosome domains but relative shifts of a small fraction of the genome that highly correlates with changes in gene expression.
0

Beyond A and B Compartments: how major nuclear locales define nuclear genome organization and function

Omid Gholamalamdari et al.Apr 23, 2024
+10
L
P
O
Abstract Models of nuclear genome organization often propose a binary division into active versus inactive compartments, yet they overlook nuclear bodies. Here we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Whereas gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.
0

Nucleolus and centromere TSA-Seq reveals variable localization of heterochromatin in different cell types

Pradeep Kumar et al.Nov 1, 2023
+10
J
L
P
Abstract Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.
0

Identification of decondensed large-scale chromatin regions by TSA-seq and their localization to a subset of chromatin domain boundaries

Omid Gholamalamdari et al.Apr 6, 2021
A
Y
L
O
Abstract Large-scale chromatin compaction is nonuniform across the human genome and correlates with gene expression and genome organization. Current methodologies for assessing large-scale chromatin compaction are indirect and largely based on assays that probe lower levels of chromatin organization, primarily at the level of the nucleosome and/or the local compaction of nearby nucleosomes. These assays assume a one-to-one correlation between local nucleosomal compaction and large-scale compaction of chromosomes that may not exist. Here we describe a method to identify interphase chromosome regions with relatively high levels of large-scale chromatin decondensation using TSA-seq, which produces a signal proportional to microscopic-scale distances relative to a defined nuclear compartment. TSA-seq scores that change rapidly as a function of genomic distance, detected by their higher slope values, identify decondensed large-scale chromatin domains (DLCDs), as then validated by 3D DNA-FISH. DLCDs map near a subset of chromatin domain boundaries, defined by Hi-C, which separate active and repressed chromatin domains and correspond to compartment, subcompartment, and some TAD boundaries. Most DLCDs can also be detected by high slopes of their Hi-C compartment score. In addition to local enrichment in cohesin (RAD21, SMC3) and CTCF, DLCDs show the highest local enrichment to super-enhancers, but are also locally enriched in transcription factors, histone-modifying complexes, chromatin mark readers, and chromatin remodeling complexes. The localization of these DLCDs to a subset of Hi-C chromatin domain boundaries that separate active versus inactive chromatin regions, as measured by two orthogonal genomic methods, suggests a distinct role for DLCDs in genome organization.