MF
Max Farnworth
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mosaic evolution of a learning and memory circuit in Heliconiini butterflies

Max Farnworth et al.Apr 24, 2024
A critical function of central neural circuits is to integrate sensory and internal information to cause a behavioural output. Evolution modifies such circuits to generate adaptive change in sensory detection and behaviour, but it remains unclear how selection does so in the context of existing functional and developmental constraints. Here, we explore this question by analysing the evolutionary dynamics of insect mushroom body circuits. Mushroom bodies are constructed from a conserved wiring logic, mainly consisting of Kenyon cells, dopaminergic neurons and mushroom body output neurons. Kenyon cells carry sensory identity signals, which are modified in strength by dopaminergic neurons and carried forward into other brain areas by mushroom body output neurons. Despite the conserved makeup of this circuit, there is huge diversity in mushroom body size and shape across insects. However, an empirical framework of how evolution modifies the function and architecture of this circuit is largely lacking. To address this, we leverage the recent radiation of a Neotropical tribe of butterflies, the Heliconiini (Nymphalidae), which show extensive variation in mushroom body size over comparatively short phylogenetic timescales, linked to specific changes in foraging ecology, life history and cognition. To understand the mechanism by which such an extensive increase in size is accommodated through changes in lobe circuit architecture, we first combined immunostainings of structural markers, neurotransmitters and neural injections to generate, to our knowledge, the most detailed description of a Papilionoidea butterfly mushroom body lobe. We then provide a comparative, quantitative dataset which shows that some Kenyon cell populations expanded with a higher rate than others in Heliconius , providing an anatomical parallel to specific shifts in behaviour. Finally, we identified an increase in GABA-ergic feedback neurons essential for non-elemental learning and sparse coding, but conservation in dopaminergic neuron number. Taken together, our results demonstrate mosaic evolution of functionally related neural systems and cell types and identify that evolutionary malleability in an architecturally conserved parallel circuit guides adaptation in cognitive ability.
0
Citation1
0
Save
0

Sequence heterochrony led to a gain of functionality in an immature stage of the central complex: a fly-beetle insight

Max Farnworth et al.Dec 20, 2019
Abstract Animal behavior is guided by the brain. Therefore, adaptations of brain structure and function are essential for animal survival, and each species differs in such adaptations. The brain of one individual may even differ between life stages, for instance as adaptation to the divergent needs of larval and adult life of holometabolous insects. All such differences emerge during development but the cellular mechanisms behind the diversification of brains between taxa and life stages remain enigmatic. In this study, we investigated holometabolous insects, where larvae differ dramatically from the adult in both behavior and morphology. As consequence, the central complex, mainly responsible for spatial orientation, is conserved between species at the adult stage, but differs between larvae and adults as well as between larvae of different taxa. We used genome editing and established transgenic lines to visualize cells expressing the conserved transcription factor retinal homeobox, thereby marking homologous genetic neural lineages in both the fly Drosophila melanogaster and the beetle Tribolium castaneum . This approach allowed us for the first time to compare the development of homologous neural cells between taxa from embryo to the adult. We found complex heterochronic changes including shifts of developmental events between embryonic and pupal stages. Further, we provide, to our knowledge, the first example of sequence heterochrony in brain development, where certain developmental steps changed their position within the ontogenetic progression. We show that through this sequence heterochrony , an immature developmental stage of the central complex gains functionality in Tribolium larvae. We discuss the bearing of our results on the evolution of holometabolous larval central complexes by regression to a form present in an ancestor.
0
Citation1
0
Save
0

An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium castaneum

Bicheng He et al.Jun 6, 2019
The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.
48

An atlas of the developing Tribolium castaneum brain reveals conserved anatomy and divergent timing to Drosophila melanogaster

Max Farnworth et al.Dec 1, 2021
Abstract Insect brains are formed by conserved sets of neural lineages whose fibres form cohesive bundles with characteristic projection patterns. Within the brain neuropil these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed e.g., in size and shape and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum , covering the first larval instar, the prepupal stage and the adult, by combining wholemount immunohistochemical labelling of fibre bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in D. melanogaster , we confirm an overall high degree of conservation. Fibre tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like anti-acetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
48
0
Save